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of an initial stimulus being shown without responding, for 3 seconds to “learn” the new 
information, is referred to as a “Correct Rejection”, while responding to the first presentation of 
an image in this case would be considered a “false alarm”.  The primary hypothesis in this study 
was that SDT analytic methodology (Stanislaw & Todorov, 1999), distinguishing repeated 
images (signals) from initial presentations (non-signals), applied to the MemTrax output data 
would provide two specific metrics, the degree of correctness of performance (percent correct, 
reflecting the d’ – d-prime - component) and the tendency to over or under respond (response 
balance or bias of HITs and Correct Rejections, reflecting the ”beta” component), and these 
metrics were anticipated to differentiate cognitive function and thus explain individual 
performance on this CRT.  The secondary hypothesis was that Response Time (RT) would 
correlate most directly with correctness of performance (related to d’), rather than the response 
balance, a speed-accuracy trade-off (related to beta), or percent HITs or Correct Rejections.  In 
a prior version of MemTrax, using a PowerPoint presentation to audiences, d’ correlated with 
age (r2 = – 0.37), more than HIT rate (r2 = -.24) or false alarm rate (r2 = 00.25), though RT was 
not available (Ashford et al., 2011).  However, in another study of MemTrax on-line, the 
correlation of percent correct with age was much less (r2 < -0.02). while the correlation of RT 
with age was about also less (r2 = -0,08) (Ashford et al., 2019); percent HITs and Correct 
Rejections were not analyzed in that study. 

A predecessor of the MemTrax CRT was used in a primate laboratory (Ashford & Fuster, 
1985; Coburn et al., 1990), where visual cortical neuron response latencies to information-laden 
stimuli were found to occur simultaneously across recruited cortical regions, suggesting a 
coordinated massive reciprocal capacity for item analysis (J.W. Ashford et al., 1998).  It was 
further shown that the Rhesus monkeys could recognize letters in a serial visual learning and 
recognition task (J.W. Ashford et al., 1998).  This serial visual recognition task was later 
modified for clinical use with a slide projector using complex visual stimuli and then piloted as a 
PowerPoint presentation to large community-based audiences of elderly individuals concerned 
about their memory (Ashford et al., 2011).  Because of the engaging nature and positive user 
experience reported, this task paradigm was implemented on-line to assess memory problems 
in the general population (Ashford et al., 2019).  This sophisticated but simple paradigm can be 
quickly administered with measurement precision far beyond that possible with paper-and-pencil 
tests (Liu et al., 2021; van der Hoek et al., 2019). 

 

Episodic Memory and Response Time (RT) to Recognize Visual Stimuli 

Episodic memory contains the ‘what’, ‘where’, and ‘when’ information that interacts and 
binds with information in semantic memory to form time-based concepts of those events. The 
organization of these defining declarative features into progressively more complex concepts 
optimizes capacity limitations imposed on short-term memory (STM). Recall of information from 
non-declarative, or implicit memory requires no conscious or intentional involvement and is 
referred to as perceptual memory. Thus, in contrast to content-based storage in the episodic, 
semantic, and declarative systems, implicit memory includes processes and procedures that 
reduce effort to learn, store, think about, and convert information in STM into long-term memory 
(LTM).  An important concept is the efficiency with which information can be integrated across 
such processes (Weigard & Sripada, 2021). 

 

Response time (RT) to stimuli presented in tasks has been studied extensively in 
evaluating episodic memory.  Recognition memory is an area of notable interest.  Whereas 
paired-associates learning provided an early method to study memory (Shepard, 1958), 
recognition testing provides a method for estimating the quantity of information retained in 
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memory  (Shepard, 1961).  Recognition memory paradigms have been studied to determine 
memory capacity and limitations, particularly using SDT and speed-accuracy trade-offs, and 
comparing memory theories such as the recruitment model and scanning model, with important 
implications for decision latency, including correct responses which are shorter than incorrect 
responses (Pike et al., 1977).  A important development was the development of a continuous 
recognition approach in which new and old items were interspersed (Shepard & Teghtsoonian, 
1961).  Since the early studies of recognition performance, demonstrations of the utility of 
complex pictures in the CRT paradigm to study memory have been extensive. 

Surprisingly, the first scientific study conclusively demonstrating that the human could 
remember large amounts of information utilized numerous complex color pictures presented to 
individuals who showed high levels of recognition after both short and very long delays 
(Shepard, 1967).  In a cross-species study, pigeons and monkeys are able to recall complex 
pictures moderately well; however, humans remember pictures so well that to test the limits of 
normal human capacity, it is necessary to utilize highly complex stimuli, such as kaleidoscope 
images (Wright et al., 1985).  With such recognition memory paradigms, RT to stimuli can be 
analyzed to determine the time which the individual takes to recognize and respond to a 
previously shown item (Hockley, 1982). 

 A prominent interest has been the decay of memory traces coincident with increasing 
intensity of intervening distractions (Hintzman, 2016), including the lag from a first to a second 
presentation of an image (Hockley, 1982). Complex picture recognition has been particularly 
useful for studying medial temporal lobe function (Koen et al., 2017; Suzuki et al., 2011).  And 
recognition memory and CRT paradigms have been used effectively in studying neural 
responses in the human hippocampus to assess episodic memory (Wixted et al., 2018), 
regardless of variations in the method of test administration (Bayley et al., 2008).  However, 
behavioral pattern separation in memory progressively and distinctively declines from healthy 
individuals to those with mild cognitive impairment (Stark et al., 2013). 

The MemTrax CRT requires complex picture information processing into STM and 
access and recognition of content from LTM for use in responding to the future stimuli presented 
in the task, because each stimulus, in addition to being a potential current target, is also 
potentially a new stimulus and thus a potential later target.  CRTs like MemTrax are applied to 
examine these events in the brains of subjects instructed to attend to stimuli and indicate 
repetition. In this case, detection of repetition of the “target” stimulus produces an overt behavior 
(response, either a space-bar press, a screen touch, or a mouse click) that signals “yes, a 
repetition was detected” or a covert behavior (no response) indicating “no, a repetition was not 
detected” on a particular trial. 

 

Response Accuracy, Time, and Factors Modifying Signal Detection 

SDT suggests that there are two factors which affect the accuracy of information 
processing and the time to accurately respond to a stimulus (RT) as instructed. The first factor is 
the internal state of the subject related to their health and prior knowledge stored in LTM.  This 
factor relates to the motivation to participate in the testing, the ability to sense the stimulus and 
maintain the instructional set, and issues not related to the task.  Internal state in this context 
alters the ability of the subject’s information processing sequence to engage with the task and 
execute a correct behavior (HIT: target present and participant responds as instructed; and 
Correct Rejection: target not present and participant does not respond) or an incorrect behavior 
(False Alarm: target not present and participant responds in spite of instruction not to respond; 
and Miss: target is present, and participant does not respond as instructed) on each trail. This 
ability factor is referred to as d’ (d-prime) and reflects the sensitivity or degree of discrimination 
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between the targets and non-targets.  Accordingly, in a CRT, the SDT models a single factor 
controlling recognition correctness but does not account for different internal or external issues 
which may differentially affect the HIT versus Miss recognition or the Correct Rejection versus 
False Alarm decision. 

The second factor is the knowledge acquired by the subject performing the task about 
environmental factors, like the a priori probability of a particular occurrence and the payoff 
matrix describing the consequence for a correct versus incorrect behavior on a trial (Liu et al., 
2019).  Such knowledge can be used by cognitive processes directed by those operations in 
WM to establish a criterion for response performance on subsequent trials during the task.  This 
second factor is referred to as “beta”, reflecting the tendency to under-respond or over-respond.  
The predilection to miss targets (recognition failure) or wrongly identify new stimuli (incorrectly 
guess, False Alarm) is of great importance for interpreting performance and understanding 
disorders of a subject’s information processing system and is related to the RT (Gordon & 
Carson, 1990).  However, there may be many factors involved in the processing of information 
and cognitive impairment. So, the process of recognition may be impaired and slow 
responsiveness, while a separate, unrelated executive process may change the response bias 
and affect response time in a different manner. 

Instructions provided to the participant prior to testing describe the processing required 
to meet task demands for a CRT (Craik, 2002).  These instructions direct the required 
operations in WM on how to execute processes to meet task demands.  In the MemTrax CRT, 
the neurocognitive processes are: 1) specifically compare and detect representation(s) that 
match prior occurrences during the test, e.g., “recognize”; 2) if a recognition occurs, manifest a 
response as quickly as possible; and 3) direct processes to use information on a trial to update 
expectations so this information is adequately encoded to be available for “recognition” for 
subsequent trials (Clifford & Williston, 1992, 1993; Fabiani et al., 1986; Walley & Weiden, 1973).  
As described for attention (Posner, 1994), instructions may alter the effects which the internal 
state of the subject has on processing during and between trials. Complex visual information, as 
shown to participants during a MemTrax trial, activates visual cortical regions, including the 
occipital and inferotemporal cortex (Ashford & Fuster, 1985).  However, the MemTrax test 
instructions require attention to the stimuli for recognition and possible encoding, which will also 
activate the prefrontal cortex (J.W. Ashford et al., 1998; Kapur et al., 1994). 

 

Response Time Distribution Skewing 

The present study examined subject response time means and their relationship to the 
universal observation that the averaged distribution of RTs during CRTs differs from the normal 
Gaussian distribution and is skewed, with absolute lower limits and less bounded upper limits. 
The explanation for the skewed distribution of RTs has been difficult, though numerous models 
have been suggested (Burbeck & Luce, 1982; Hockley, 1982, 1984; Liu et al., 2019; Moret-
Tatay et al., 2018; Moret-Tatay et al., 2021).  An exponentially modified Gaussian probability 
density function (ex-Gaussian) (Ratcliff & Murdock, 1976), which provides parameters related to 
performance across different tests (Hockley, 1984), has been widely used to model individual 
response times. The ex-Gaussian model is based on a theory that RT reflects two underlying 
psychological mechanisms (processes): the decision component for sensory processes that 
obeys an exponential distribution (decay curve), and the transduction component related to the 
initiation and completion of the physical response to the stimuli that follows a normal Gaussian 
distribution (Dawson, 1988; Marmolejo-Ramos et al., 2014).  Following this theoretical construct, 
RT during these tasks has been modeled as the convolution of an exponential function and a 
Gaussian function to form an exponentially modified Gaussian curve (the ex-Gaussian function) 
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sensitive to both mechanisms.  The ex-Gaussian function has been invoked to explain 
recognition processing based on response times (Moret-Tatay et al., 2021) and reaction time 
slowing in Alzheimer’s disease (Gordon & Carson, 1990; Ratcliff et al., 2021).  This distribution 
requires three parameters to model RT – the mean and standard deviation of the Gaussian 
distribution and the decay constant of the exponential component. 

Due to issues related to the complexity of RT measurement and explanations of the 
underlying neural mechanisms subserving decision making, significant effort has been 
expended to develop other approaches to model the skewed distribution of RTs to obtain a 
deeper understanding of experimental effects on the underlying neural and psychological 
processes supporting these data (Ratcliff et al., 2016; Weindel et al., 2021). These approaches 
have been divided into two groups – measurement models and process models (Anders et al., 
2016; Tejo et al., 2019).  The measurement models include Weibull and lognormal (Anders et 
al., 2016) models.  The process models, which address the internal information analysis by the 
individual,  include the diffusion model (Liu et al., 2022; Ratcliff & McKoon, 2008; Ratcliff & 
Murdock, 1976; Ratcliff et al., 2016) and the leaky-competing accumulator model (Tsetsos et al., 
2012; Usher & McClelland, 2001).  In reality, there are many mathematical models that can 
produce similar distributions to explain various complexities of cognitive tasks (Liu et al., 2019), 
and many theoretical models have attempted to provide explanations (Cousineau et al., 2016; 
Hasshim et al., 2019; Osmon et al., 2018), though the actual neural processing may not 
conform to such models. 

 

MemTrax CRT Analysis 

In the present study the distributions of correct and incorrect behaviors were examined 
with respect to overall performance.  Then, the distribution of mean RTs executed during the 
MemTrax CRT was evaluated.  The objective of the present analyses was to determine the 
extent to which the cumulative distribution of performance metrics during this test, number of 
responses, correctness of responses, and the response time for correct responses, can be 
modelled, with determinations of types of performance limitations and interactions.  Of particular 
interest were response performance levels, response biases (strategies, value-based decision-
making), and the relationship of RTs to an exponential regression, which only requires two 
parameters.  There was an earlier expectation that there would be a speed-accuracy trade-off, 
but prior studies showed that correctness of performance has a slight positive correlation with 
RT in various populations.  Also, previous research examined percent correct and presumed 
that there would be a close relationship between HITs and False Alarms.  Further, it was 
expected that both types of behavioral responses and RTs would be balanced, reflecting the 
central processing of information, consistent with an information processing model using SDT.  
While these expectations were not correct, these analyses in a large group of subjects provided 
new behavior models and solid bases for using the MemTrax CRT for more extensive 
assessments and reliable interpretation of behavioral performance.  The data, though from 
anonymous individuals, clearly showed a distribution of several behavioral metrics and provided 
a guide to determine normal ranges. Metrics from such a large population can lead to the 
establishment of valid and reliable assessments of episodic memory function in clinical settings. 

 

METHODS 

Population 

This study examined results from individuals who completed the MemTrax automated 
CRT program: https://memtrax.com on the internet between May 27, 2014, and May 7, 2022.  

http://www.memtrax.com/
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During this time, over 2 million hits were recorded on the MemTrax website.  Of these, the test 
was started and completed 602,272 times by 344,165 distinct users.  The test was programmed 
to save data on the server before the test results were returned to the user.  First-time users 
were offered an option to sign-up on the website and have their data associated with their 
password protected email account so that they may see their own performance over time. Of 
these users, 256,949 took the test only once, while 87,214 (25%) signed up for and took repeat 
tests.  Of those who signed up, 271 of these users took the test more than 75 times and 18 took 
it more than 1,000 times (Figure 1).  For this analysis, data were examined for only the first test 
for first-time users who took and completed the test, presumably 344,165 unique individuals.   

At sign-up, subjects were asked to provide year and month of birth, sex, and education 
level, though there was no method for verification of this information.  This demographic 
information was only provided by 26,834 users; however, not being verifiable, these data were 
discarded.  Data from all tests, including RT for each individual stimulus (50), were available for 
analysis, though only average RT was examined in this study. The Stanford University Internal 
Review Board approved this test for anonymous collection and analysis of these data. 

 

 

 

 

Design 

The MemTrax test program was designed in WORD-PRESS so that it would perform 
essentially the same on any platform.  The on-line implementation presents 50 images, 25 new 
and 25 repeated, with the instruction to respond to repeated images as quickly as possible.  
Users are allowed up to 3 seconds after stimulus presentation to respond to an image.  The 
exact time for each response (1 to 3,000 milliseconds) was recorded, with 200 to 3,000 
milliseconds considered a “response” and less than 200 milliseconds or exactly 3,000 
milliseconds considered a “non-response”.  (The 200 millisecond lower limit was chosen as a 
typical response time for a fast-reaction to a stimulus change – a value well below any observed 
decision time, hence not a legitimate response.)  Each test had 5 unique images from each of 5 
categories, which were selected from 3,000 images curated into 60 categories.  These images 
were presented in a pseudo-random order with no more than 4 new images or repeated images 
occurring in a sequence (similar to the rules of the Gellerman series, L.W. Gellerman, 1933).  
For the 5 items in each of the 5 categories (25 unique images), three images were repeated 
once, while one was repeated twice, and one was not repeated.  This study did not analyze the 
effects of lag or number of repeats. 

Basic analyses for every individual examined “Responses” either indicated by the press 
of a space bar, the tap of a screen, or click of a mouse, depending on platform used, for each 
stimulus and mean RT across all HITs.  The number of “Correct Trials” was tabulated (0 - 50; 
ideally 25 HITs and 25 Correct Rejections.  From these measures, other metrics were 
calculated, including: number of incorrect responses (“False Alarms” = “25 - Correct Rejections”, 
optimally zero), number of failures to respond to a repeated image (“Misses” = “25 – Hits”, 
optimally zero), “Total Number of Responses” (“HITs” plus “False Alarms”), and mean response 
time to “HITs” (“RT”).  A more complete description of the task has been previously published 
(Ashford et al., 2019). 

 

Data Analysis 
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For first-time tests for the 344,165 unique users, 59,499 tests with performance of 
chance or poorer, i.e., less than 30 correct out of 50 possible choices (random likelihood of 
getting 30 or more correct is less than 1/1000), which included tests with fewer than 5 HITs or 
fewer than 5 Correct Rejections, were removed (17% of the initial uses), leaving 284,644 tests.  
Also, of these tests, those with average RTs to HITs less than 0.5 second (2,350 had less than 
0.5 second with very few of these having more than 30 correct responses, 0.8%) or more than 2 
seconds (n=156) were removed.  Another 18 were removed due to a programming error.  Thus, 
282,140 tests were considered valid and used for this study and analyses (82% of the first-time 
users).   

Data from these tests were analyzed with an EXCEL spreadsheet (Microsoft, Inc.).  Main 
functions used included sorting, scatter plots with trend lines and Pearson correlations, 
COUNTIF, and AVERAGEIF.  Analyses were made according to total overt responses (sum of 
HITs and False Alarms, based on platform, either space-bar presses, screen taps, or mouse 
clicks, the dependent variables), in response to the picture stimuli (initial or repeated, the 
independent variables) and total correct trials (sum of HITs and Correct Rejections).  Specific 
analyses of the numbers of types of responses (HITs, Correct Rejections, Misses, and False 
Alarms) across subjects were performed.  The distribution of RTs was analyzed by examining 
the cumulative distribution and the negative natural log of the cumulative distribution which was 
tested for its relationship to an exponential regression.  RT was analyzed for its relationship with 
the performance metrics. 

 

RESULTS 

Number of Responses and Response Correctness  

About 17% of participants had exactly 25 responses (optimal number), with about 32% 
having less than 25 responses and about 51% having more than 25 responses, which would 
therefore include correct and incorrect overt responses (Figure 2a).  There were approximately 
equal proportions of correctness for tests with less than 25 total responses and more than 25 
responses, with a monotonic decline of correctness with progressively less and more than 25 
responses (Figure 2b).  This decline was clearly related to a progressive decrease of HITs for 
tests with less than 25 total responses, with a stable, high number of Correct Rejections.  
Symmetrically, above 25 total responses, there was a progressive decrease of Correct 
Rejections, with a stable, high number of HITs, indicating that the proportion of HITs and 
Correct Rejections was dominantly influenced by a strategy to have either fewer or more 
responses across all the stimuli, a pattern clearly different from a random interaction (Figure 2c).  
Though exactly 25 HITs were needed for a perfect score, for subjects with 38 – 49 correct trials 
(1 – 12 errors) there was a slight but clear tendency to respond to more than 25 of the repeated 
images (more False Alarms than Misses), with the maximum at 44 correct trials, averaging 25.8 
responses (Figure 2d). By contrast, subjects executing 35 – 37 correct trials had active 
responses to about 25 of the repeated images (an average balance of False Alarms and 
Misses).  Subjects with less than 35 correct trials (more than 15 errors) tended to substantially 
over-respond (even more False Alarms than Misses) up to an average of 26.6, an over-
response rate of 7%.  The pattern in Figure 2d indicates a complex relationship between the 
number of correct trials and responses. 

Among these tests, only about 5% of participants had perfect performance (25 correct 
responses and 25 correct rejections), and 10% of the participants had 49 correct responses and 
correct rejections (1 False Alarm or 1 Miss; Figure 3a).  When the correct components, HITs 
and Correct Rejections, were plotted separately, they had a similar distribution to the overall 
correct response plot (Figure 3b).  However, the maximum number of HITs for tests occurred at 



9 
 

24, for 24.5% of the tests, while the maximum number of Correct Rejections, also occurred at 
24, with 21.1% of the tests.  Figure 2c shows the discordance of HITs and Correct Rejections, 
showing symmetrical variation, but they have a different peak than the correct response total. 

Of all tests, 63% of participants had at least 45 (90%) Correct Responses (HITs and 
Correct Rejections) on trials with no more than 5 incorrect responses (False Alarms and/or 
Misses) (Figure 4a).  Of these unique subjects, 85% had at least 42 (84%) correct trials (HITs 
and Correct Rejections; no more than 10 errors), 92% had at least 40 (80%) correct, while less 
than 3% had 35 or fewer (70%) correct responses (at least 15 errors) (Figure 4b).  

In the examination of the relationship between HITs and Correct Rejections, there was 
essentially no correlation (R-squared less than 0.001) (Figure 5a).  When plotting the average 
number of Correct Rejections versus the number of HITs (Figure 5b), or the average number of 
HITs versus the Correct Rejections (Figure 5c), the performance above or below 25 responses 
noted in Figure 2c is clearly explained.  The implication of these analyses is that subject 
strategies have a complex relationship with the manifest performance, including the tendency to 
respond to more or less than 25 images, which reflects a consistent bias across responses to 
new and repeated images.  Accordingly, the responses of these participants are far from 
random, and the patterns of their responses presumably represent specific intents, biases, 
predispositions, or strategies. 

 

Response Time (RT) Distribution 

A major issue was the distribution of mean RTs for HITs during the MemTrax CRT 
paradigm. Only mean RTs for HITs between 0.5 sec. to 2 sec. were considered for this analysis. 
The distribution of those RTs shows a clear inverted-U-shaped pattern skewed to the right, and 
the median response time was 0.89 sec. (Figure 6).  Only 63 subjects had RTs for HITs 
between 0.500 and 0.510 seconds, 6 individuals at each millisecond interval, while more than 
600 subjects had RTs at each millisecond interval between 0.8 and 0.9 seconds, a total of 
68,550 (24%).  The RT cumulative distribution (RTCD) also shows the relationship between 
response times and number of tests (Figure 7a).  For 2 standard deviation limits, 2.2% of the 
population had response times faster than 0.647 seconds while another 2.2% of the population 
was slower than 1.4 seconds.  Only 1% of the participants had RTs faster than 0.62 seconds, 
and the increase of false alarms for subjects responding in this range (see below) suggests that 
they were sacrificing accuracy for speed.  Only 1% of subjects responded slower than 1.57 
seconds (Figure 7b), and these subjects also generally had lower correct response percentages 
and fewer HITs (see below).  The fast responders were the only participants who appeared to 
manifest a “speed-accuracy trade-off”.  

The sharp rising slope of fast RTs between 0.5 to 0.7 seconds, the rounded peak 
between 0.7 and 1 second, and the prolonged tail of slow RTs beyond 1.2 seconds (Figure 6) 
showed the skew of the RTCD in this data.  Therefore, the basis of this RTCD skew was 
considered for development of an explanatory mathematical model.  Most equations have 
difficulty accounting for the sharp drop of the fast RTs and the prolongation of the slowed RTs. 
Consistent with the limited capacity of the activated neurophysiological mechanisms required for 
efficient engagement of the information processing sequence (Broadbent, 1965), the RTCD 
must reflect the time needed for information processing to occur in the neural substrates 
supporting resources in the visual modality.  Certain elements relate to STM, and others involve 
processes in WM, while the slow decline reflects the lack of such resources for processes 
directed by operations in WM.  A variety of mathematical models have been invoked to explain 
the skewed distribution seen in response times.  However, these models use at least 3 
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parameters to describe the skew distribution.  For example, the ex-Gaussian distribution uses 
two Gaussian parameters and an exponential parameter ((Dawson, 1988).   

To better understand the skewed RTCD, a new perspective was taken to describe this 
RTCD.  Examination of the RTCD (Figure 7a) demonstrated a curve similar, but in reverse, to a 
survival curve, also known as a Gompertz Law exponential hazard function (Hirsch, 1997; 
Gavrilov & Gavrilova, 2001; Raber et al., 2004).  To test the applicability of this mathematical 
model, a negative normal log of the CD was calculated (Figure 8a).  This exponential curve 
explained nearly all the variance:  R2 = 0.9999: 

Ln(CD) = 263.94 x EXP(-6.682 x RT)      (Cumulative Distribution; Response Time) 

Percentile = 1-EXP(-263.94*EXP(-6.682*RT)) 

for RTs for HITs between .6 and 1.6 seconds, with 0.5% of the data above and the same 
number below these limits.  Only 0.2% of the responses during these tests were above 1.8 sec., 
and those RTs were chaotic (Figure 9a).  Backward calculating this curve to create a “reverse 
exponential distribution” (RevEx) and superimposing this curve on the distribution of RTs for 
HITs shows essentially a perfect fit, considering some statistical noise and a deterioration of 
performance for RTs greater than 1.6 second (Figure 8b).  Note that the Rev-Ex model requires 
2 parameters while the ex-Gaussian requires 3 parameters. 

 

Relationship between Correctness of Responses and Response Time 

In general, faster response times were associated with individual tests having above the 
optimal number of responses (25), with a sharp increase of number of responses for those in 
the fastest 2% (below 2 standard deviations, 0.64 seconds), and a progressive decrease of 
responses with higher response times, down to an average of 22 responses at 1.5 seconds.  
There was a scattering of response times among the slowest 2% (above 2 standard deviations, 
1.4 seconds) (Figure 9a).  Of note, apropos to the variation of performance/strategy for those 
having more or less than 25 responses, those tests with more than 25 responses were 
associated with progressively faster response times from 0.9 seconds for 25 responses and 0.8 
seconds for 45 responses (Figure 9b).  Alternatively, fewer than 25 responses were associated 
with a progressive slowing of responses to 1.278 seconds for 11 responses.  For the 969 
subjects with 5-10 responses, response times decreased progressively to 1.05 seconds for only 
5 responses (average of 127 tests). 

The most correct performances were associated with response times of 0.6 to 1.0 
seconds, with the average number of correct trials for this range being 44 to 46 (HITs plus 
Correct Rejections, trials with 2 to 6 errors) (Figure 10a). Progressively faster RTs from 0.6 to 
0.5 seconds were associated with a rapid deterioration of correct performance to chance, while 
RTs from 1.0 to 1.5 seconds were associated with a more gradual deterioration of correct 
responses to 40 (10 errors). Less than 1% of participants had RTs over 1.5 seconds, and these 
subjects had a broad range of correct responses, 30 to 48 (2 to 20 errors) (Figure 10a). 
Importantly, those subjects with perfect scores (0 errors) averaged 0.84 seconds, with 
increasing errors associated with progressively slower RTs for HITs, so that the average 
response time for those subjects having 35 correct trials (with 15 errors) was 1.07 seconds 
(Figure 10b).  Below this level of performance, those having 30 to 35 correct trials (with 15 – 20 
errors) had slightly faster RTs, which was associated with the increased variability of 
performance in this lower 3% of the group.  

As noted above, there is a considerable division in behavior for HITs and Correct 
Rejections.  As the data for correct performance is a sum of HITs and Correction Rejections, 
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there is a substantial question of how these measures relate to RT.  When response time to 
HITs was compared only to the number of HITs, there was a closer relationship than with 
number of responses or total correct trials (Figure 11a).  The average number of HITs was 
consistently at least 20 out of 25 for response times between 0.5 seconds and 1.4 seconds.  
The relationship between HITs and response times showed that the optimal number of HITs, 25, 
was associated with a response time of 0.837 seconds, with a smooth slowing, decreasing HITs 
to 10 at a response time of 1.3 seconds (Figure 11b).  For the 1,083 tests with only 5-9 HITs, 
response time was then progressively faster to 1.069 seconds. 

A major factor associated with RT was response bias, the tendency to make fewer than 
or more than 25 responses (the ideal number being 25).  This tendency is most clearly seen 
when examining the Correct Rejections.  The RT had relatively little relationship with Correct 
Rejection count (Figure 12a).  For the 95% of tests with RTs between 0.64 to 1.4 seconds, the 
number of Correct Rejections was very stably close to 22.  However, for RTs less than 0.640 
seconds, there was a clear, sharp drop in the number of Correct Rejections.  Above 1.4 
seconds, there was again a scattered pattern of Correct Rejections with no consistent 
relationship with RT.  When the averages of RT were compared for numbers of Correct 
Rejections, there was only a slight slowing from the optimal number of 25 at 0.910 seconds to 
around 930 milliseconds for only 15 correct, showing the minimal relationship between RT and 
Correct Rejections for tests with better performance (Figure 12b).  However, for tests with only 5 
to 14 Correct Rejections, there was the progressive shortening of RTs with fewer Correct 
Rejections again seen.  Clearly, the pattern of the relationship between Correct Rejections and 
RT was very different than the one between HITs and RT (and shown on the same axis to 
highlight the difference, Figure 13). 

 

Figures 9, 10, 11, and 12 show the complex relationship between correctness of 
responses and response tendency to RT.  To determine the Pearson correlation between 
correct responses and RT, the major outliers were removed.  Tests with fewer than 10 HITs 
(1,083), fewer than 15 Correct Rejections (5,400), RT less than 600 milliseconds (1,538), or 
more than 1.4 seconds (5,856), and trials with less than 35 correct responses (1,277) were 
eliminated (total removed = 15,565 = 5%), leaving 266,584 tests. This removal (had minimal 
effect on the correlations) produced a correlation between RTs and Correct Responses: R2 = 
0.081, while the correlation between RTs and HITs: R2 = 0.14, was significantly higher.  When 
averaging across RTs for each number of correct responses (35-50) or HITs, 10 – 25, there was 
a clear linear progression seen, which is like the curves of Figures 10b and 11b, with a linear 
regression explaining essentially all of the variance for 35 to 50 correct responses and 10 to 25 
HITs, respectively.  The clear emergence of this high explanation of the variance indicates that 
the MemTrax test is measuring important neurophysiological phenomena in visual information 
processing, but there was a substantial amount of noise when assessing individual subject 
performances. 

 

DISCUSSION 

The present study demonstrated that the MemTrax CRT – an inexpensive and scalable 
platform – can be efficiently used to obtain a large amount of reliable behavioral data describing 
learning, memory, and cognition in populations, with important implications for cognitive 
performance metrics for individuals.  By selecting performances meeting non-random criteria 
and appropriate response characteristics, population distributions of data could be analyzed and 
compared.  The MemTrax CRT data contained measures of correctness, Total Number Correct, 
HITs, Correct Rejections, False Alarms, and RTs.  The first principal finding was that HITs and 
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Correct Rejections did not correlate with each other, meaning that Signal Detection Theory 
analysis would not apply, and HITs and Correct Rejection accuracy had very different 
implications for explaining a subject’s performance.  The second principal finding was that the 
average RTs corresponded more closely with HITs than overall correctness or Correct 
Rejections.  The third principal finding was that the Response Time distribution followed a 
reverse-exponential (RevEx) model requiring only 2 parameters. 

 

Previous studies have shown effects of age and education on these MemTrax metrics 
(Ashford et al., 2011; Ashford et al., 2019).  Further, two comparisons with the popular cognitive 
screening test, the Montreal Cognitive Assessment (MoCA), have shown MemTrax to perform 
at least as well for distinguishing cognitive impairment from normal function using a more 
efficient system (Liu et al., 2021), and MemTrax RT significantly correlated with 6 of the 8 
domains measured by the MoCA, visuospatial, naming, attention, language, and abstraction 
(van der Hoek et al., 2019).  The MemTrax test has also been evaluated using machine learning 
showing relationships with other health measures (Bergeron et al., 2019).  This study extends 
the findings of these and other prior studies using a very large population.  The large population, 
with data selected from 344,165 presumed-unique, anonymous users, provides performances of 
nearly every possible variety, and reflects the behavioral diversity of the on-line population, 
which is becoming more and more representative of the whole population.  And the large 
number of users and repeat uses reflects the degree to which this test is highly engaging.  
These analyses showed that both HIT responses, Correct Rejections, and RTs for those HITs to 
stimuli repeated can be measured and used in large projects. 

 

Response Accuracy 

Of specific interest were the analyses of correct responses (HITs and Correct 
Rejections) and incorrect responses (False Alarms and Misses) from 282,140 users who 
performed this CRT paradigm within acceptable levels. The tests selected for analysis were 
from first-time users in which at least 30 out of 50 trials were correct, which indicated non-
random performance.  Further, tests were selected from which mean RTs for HITs on the 
correct trials were between 0.5 to 2.0 second, indicating reasonable efforts by the users. The 
requirement for at least 30 correct trials assured that there would be at least 5 HITs or 5 Correct 
Rejections on a test. 

An important finding was the lack of a correspondence between HITs and Correct 
Rejections.  Obviously, overall correct performance is an addition of HITs and Correct 
Rejections, so each will correlate with total correct.  But when looking across the whole 
population, these two metrics had no correlation with each other (Figure 5a).  Accordingly, these 
two independent metrics appear to represent distinct phenomena, reflecting the information 
processing challenges of the test and the strategy for optimizing the balance between accuracy 
and speed.  The performance of a HIT requires recognition of a prior image, successful access 
of STM, and the decision to respond affirmatively.  However, if there is uncertainty about the 
recognition or confusion with a similar image which is new, a blurring of episodic memory, a 
response will be a False Alarm.  Because of the constant variation of stimuli and categories, 
HITs will reflect the level of certainty about a repeated image.  Alternatively, a False Alarm will 
reflect a bias to respond with a lower level of certainly.  Thus, the number of correct responses 
does not reflect a “signal detection”, a degree of differentiation and a response bias.  Instead, 
HITs reflect a recognition threshold, and False Alarms represent an error threshold.  The 
response strategy can then reflect an effort to respond only when there is a high level of 
certainly or to respond to avoid missing any targets. 
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With respect to interpreting MemTrax performance, the occurrence of Miss errors and 
False Alarm errors provides information which must be managed when interpreting the 
MemTrax performance metrics.  Understanding precise relationships between correct and 
incorrect responses within the MemTrax test provides information to improve its applicability to 
screening and assessment of learning, memory, and cognitive functions in clinical settings. 

 

Response Time Distribution 

Of particular interest was the skewed distribution of RTs for HITs. Analysis of the 
MemTrax data, at least for this population, showed a distribution with a skewed slope for 
averaged RTs for HITs, which was very steep for rapid RTs and particularly long for slower RTs.  
The analysis of the data from the present study showed an exponential function, the reverse of 
a survival curve, RevEx, could fully explain the variance of the RT distribution skew.  This 
exponential function can be interpreted as a requirement for doubling the processing power for 
every 100 milliseconds of decrease in RT. This pattern suggests that the nervous system must 
double the resources expended to analyze and respond to the complex information in the 
presented stimulus for each 100 msec unit of time faster, or conversely, halving the neuronal 
resources would slow the RT by 100 msec.  This exponential increase of resources required for 
shortening RT explains why it is essentially impossible to respond faster than 0.5 seconds and 
maintain correct responses. 

A variety of theoretical explanations have been invoked to explain this skewed 
distribution for response times across many paradigms (Moret-Tatay et al., 2021; Ratcliff et al., 
2016).  However, the RevEx model provides a different and direct reflection of the massive, 
reciprocal processing capability of the brain, without reliance on concepts of a series of 
processing stages.  This insight is consistent with neurophysiological analyses of neuron 
responses showing simultaneous neuronal processing across broad reciprocally connected 
cortical and brainstem regions (J.W. Ashford et al., 1998; Ashford & Fuster, 1985; Coburn et al., 
1990) and cannot be deduced from information processing models proposing a series of 
processing steps.  This perspective of RTs may have important applications for identifying 
contributors to normal and abnormal processing.  Further, the slowing of RT with 
neurodegeneration can be linked to the loss of neural network resources, as occurs in AD 
(Gordon & Carson, 1990; Ratcliff et al., 2021). 

This skewed pattern of these RTs has a mathematical relationship to the survival curve 
of essentially all living things discovered by Benjamin Gompertz in 1825, referred to as the 
Gompertz Law of Aging (Ashford, 2004; Ashford et al., 2005; Gavrilov & Gavrilova, 2001; 
Hirsch, 1997; Raber et al., 2004), just in reverse. The survival curve of all living beings is related 
to an exponentially increasing rate of mortality with age.  This “fact of life” has been interpreted 
as describing an exponentially increasing rate of failures across massively redundant systems; 
but by contrast, the Weibull curve applies to mechanical systems, not living systems (Gavrilov & 
Gavrilova, 2001).  The exponential increase of failures occurs in a progressively more rapidly 
dwindling population that leads to the appearance of a sharp rate of population decline in 
extreme age.  These MemTrax data showed that the skewed RT distribution curve is most 
efficiently explained by an exponential increase of demand for information processing resources 
to shorten RT, a reverse-exponential (RevEx) function.  The RevEx interpretation accurately 
describes how reducing resources in a working, learning, memory, and cognitive 
neurophysiological system, or information processing failures, slows RT, while implicit or explicit 
recruiting of additional resources to analyze and respond to the incoming information leads to a 
more rapid RT (Kahneman, 1973).  Critically, exponentially increasing recruitment of resources 
initially shortens RT but finally exhausts the neural resources available for processing, so 
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accurate RTs are nearly impossible to achieve for less than about 0.6 sec in the MemTrax CRT. 
The RevEx model provides a skewed RT distribution with two easily derived parameters. This 
curve can be used as a reference continuum describing the scale of severity against which 
individual responses can be compared and is likely applicable in all such information processing 
studies examining RT. 

 

 

 

Relationship between Performance Correctness and Response Time 

Examining various response correctness patterns in relationship to the distribution of 
RTs, suggests that part of the processing reflected variations in error-inducing strategies. The 
early part of the RT distribution appears to reflect a bias to respond (more False Alarms) that 
reduces time to process information and leads to more errors thus shortening the RTs for HITs.  
As the strategy becomes less about distinguishing between new and repeated images and more 
about rapid response, showing a speed/accuracy trade-off in this narrow range, with the 
average number of Correct Rejections dropping to 9.  However, with slower RTs there is a clear 
relationship to decrease of HITs, reflecting the failure to either encode or recognize repeated 
images and taking exponentially longer to process the visual information.  This analysis is 
particularly relevant for identifying progressive loss of synaptic connections, as seen in aging 
and AD (Gordon & Carson, 1990; Ratcliff et al., 2021), which are accompanied by a 
retrogenesis of the neurons (Ashford & Bayley, 2013; J W Ashford et al., 1998) and changes in 
control of executive function (Yesavage et al., 2011). These effects likely alter neuroplasticity 
and the efficiency of the information processing sequence and the resources available for 
encoding and recognizing item information over the duration of the task (J. W. Ashford, 2019; 
Ashford & Jarvik, 1985; Coleman & Yao, 2003).   Accordingly, each 50% loss of neural 
processing capacity would slow RT by about 100 msecs. 

The overall balance of HITS and Correct Rejections and the interaction with RT play 
critical roles in strategy and analytic ability.  The False Alarms metrics were not associated with 
RT, except at the shortest 1% of RTs, where increasing False Alarms were associated with a 
speed/accuracy trade-off.  At the fastest RTs, there is a likelihood that the participant was 
utilizing a strategy that made decisions so rapidly that adequate analysis of the image was not 
occurring.  However, at more usual and slower RTs, False Alarms, which are unrelated to RT, 
likely represent the failure of response inhibition, responding to a new stimulus falsely 
processing it as a repeated stimulus.  Consequently, False Alarms without a speed/accuracy 
trade-off likely represent failure of frontal lobe inhibitory function, as has been seen clinically in 
patients with diagnoses of fronto-temporal dementia (JWA, clinical observation).  Alternatively, 
an increased number of Misses was related to a progressive slowing of RT, which likely 
represents a slowing of the occipital-temporal-hippocampal visual system to process 
information, with increasing difficulty recognizing repeated visual information and generating a 
recognition response.  The latter condition explains the impairment of patients with mild 
cognitive impairment, such as AD (JWA, clinical observation), and other conditions affecting the 
temporal lobe. 

An additional finding was the low correlation between HITs and RTs across the 
population, explaining 14% of the variance (the opposite of a speed/accuracy trade-off – more 
HITs was related to faster RTs); but when RTs were averaged for specific HIT-rates, there was 
a nearly perfect relationship between decreasing HITs and increasing RT, with a loss of about 
30 milliseconds per additional miss from 25 HITs to 10 HITs. The relationship between RT and 
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average HIT-rates explained nearly 100% of the variance of the averages, suggesting a 
significant phenomenon.  Accordingly, about 85% of the variance in the relationship between 
HITs and RTs was related to variables aligned with the state of the individuals at the time of 
testing. In principle, this individual variance could be reduced by repetitions of the MemTrax 
test, which can be done essentially without limit, and frequent administrations of the MemTrax 
test over time.  Monitoring the relationship between HITs and RTs could accurately assess 
changes in the function of patients, related either to disease progression or treatment benefits. 

The present analysis indicates that HITs, the instances in which a repeated stimulus is 
recognized, has a relationship with the response speed – not the tendency to under- or over-
respond.  Thus, False Alarms alter the relationship between RTs and HITs. The relationship 
between total number of responses and more subjects with faster RTs in Figure 10a, 
descending from 1.5 to 0.6 seconds, an improvement of speed with more responses, is not due 
to a speed/accuracy trade-off; but this relationship is complex and related to a portion of 
participants over-responding to new stimuli.  However, the increased correlation after 
accounting for the over-response tendency indicates that there is a significant positive 
relationship between RTs and correct responses, not a speed/accuracy trade-off. 

The time to respond (RT) to stimuli has been used as a dependent variable to study 
effects of non-clinical and clinical phenomena on learning, memory, and cognitive functions. 
Complex picture recognition has been particularly useful for studying medial temporal lobe 
function (Koen et al., 2017) and neural responses in the human hippocampus are related to 
episodic memory (Suzuki et al., 2011; Wixted et al., 2018).  A cross-species study using this 
strategy showed that pigeons and monkeys were able to recall complex pictures moderately 
well, but that humans remembered pictures so well that it was necessary to utilize kaleidoscope 
images to test the limits of human memory and recall and recognition (Wright et al., 1985).    

 

Information Processing Models (IPMs) provide a neurological and psychological 
structure to conceptualize distributions of behavioral indices which occur during a subject’s 
performance of a task (Broadbent, 1965).  A stimulus presented on a trial interacts with and 
engages numerous processes in the brain that sense and provide a rapid, modality-dependent 
analysis of the physical parameters of that stimulus.  This initial sensory analysis engages 
attention and temporarily represents this stimulus in limited capacity STM, for determination of 
whether that information has been presented previously.  If the stimulus is analyzed as being 
novel, then the information about that stimulus is transduced, integrated, associated, and 
consolidated with other items previously consolidated into the massive capacity memory storage 
system, LTM (Atkinson & Shiffrin, 1971) for later use.  And it is the initial presentation in which 
these processes are occurring, with activation of the hippocampus, not during the later 
recognition (Suzuki et al., 2011).   Occurrences in STM can interact with processes directed by 
operations in WM, a space where these events can be manipulated (Baddeley et al., 2019). 

Instructions provided to the individual before the task began directed the information 
processing operations to execute cognitive mechanisms addressing those events in STM that 
satisfied task demands on a trial. Occurrences in STM also engage processes that consolidate 
this information and associate and integrate it with information previously stored in LTM.  LTM 
consists of an associative neural network that inter-relates all items in LTM. This information in 
LTM is continuously recalled and integrated with that in STM to support perceptual stability.  

LTM is divided into declarative and non-declarative subcomponents.  Declarative, also 
referred to as explicit memory, refers to information stored in LTM which can be intentionally 
recalled into STM, where that memory trace can be retained for seconds or minutes, but STM 
capacity is severely limited by exposure to additional information. A person can intentionally 
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direct those operations in WM to execute processes that maintain the quality and distinctiveness 
of this occurrence in STM, but only for a limited duration.  Information must be transferred into 
LTM systems for recognition or recall beyond the STM capacity.   

Behavioral patterns during these tests may separate healthy individuals from those with  

memory declines produced by mild cognitive impairment (Stark et al., 2013) and AD (Ashford, 
2008; Ashford et al., 1989).  This memory loss occurs 5 to 10 years before dementia diagnosis 
associated with AD (Tierney et al., 2005).  AD impairs recognition of complex pictures after even 
a brief delay. This rapid loss of perceived information may reflect effects that AD has on 
neurological structures subserving memory, specifically, impairment of neuroplasticity (J. W. 
Ashford, 2019; Ashford & Jarvik, 1985). Distinguishing different modes of processing may 
produce data that improves clinical classification of various aspects of dementia and AD.  

RT during performance of a CRT has been used to study effects of AD on learning, 
memory, and cognition. Simple reaction time to stimuli is relatively preserved in AD patients with 
mild impairment, while choice reaction time to difference between stimuli is adversely affected 
(Pirozzolo et al., 1981). AD patients show substantial slowing of RT in cognitive tasks (Mahurin 
& Pirozzolo, 1993) requiring this maintenance of information in STM during testing. Extensive 
study of RTs to different types of stimuli in the elderly has shown a general proportional linear 
increase in RT towards those stimuli, with a disproportionate deterioration of those RTs related 
to memory function (Bowles & Poon, 1982; Hines et al., 1982; Ishihara et al., 2002; Myerson et 
al., 1990; Poon & Fozard, 1980; Yesavage et al., 1999). Consequently, these MemTrax 
modifications of the CRT paradigm could be of considerable utility for addressing within- and 
between-trial and test-retest variation that enables tracking effects that pathology has on 
learning, memory, and cognitive function.  Evaluating such functions with computer testing can 
add considerable precision for early detection of clinical phenomena when the impairment is still 
mild along the continuum to later and more severe states. 

Similar tests administered in-person, the Continuous Visual Memory Test (Larrabee et 
al., 1992) and the Continuous Recognition Memory test (Fuchs et al., 1999), have already been 
shown to have “construct validity”.  Of note, the Continuous Recognition Memory test shows the 
same dissociation of HITs and Correct Rejections shown for these MemTrax data.  Substantial 
enhancement of the applicability of MemTrax can be achieved by analyzing the several 
MemTrax variables and establishing their precise relationships with respect to externally 
obtained data and integration with other systems such as is being conducted by the Brain 
Health Registry (Cholerton et al., 2019; Mackin et al., 2018; Weiner et al., 2018) and factor 
analysis with respect to the presence and severity of organic brain dysfunction and dementia 
(Larrabee, 2015; Ratcliff et al., 2021).  This study has shown the potential utility of the MemTrax 
on-line CRT for gathering information about learning, memory, and cognitive status of users.  
Preliminary analyses of data from the French company HAPPYneuron and the Brain Health 
Registry have shown similar results, indicating the generalizability of these data.  

 

 

 

LIMITATIONS  

 

The MemTrax data analysis presented here is from anonymous users in a convenience 
sample, and therefore cannot be considered validation for any specific purpose.  However, the 
data do clearly show a distribution of responses consistent with prior studies which have 
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included verified data.  Therefore, the data and analysis provided here is likely an acceptable 
approximation of what would be expected in a representative sample of the general population.  
Table 1 provides the tabulated data and percentiles from this anonymous group and provides 
precision measures to support the published studies showing the validity of MemTrax.  

Further analyses are needed to determine how numerous factors, including age, sex, 
education, apolipoprotein-E and other relevant genetic factors, and clinical conditions relate 
specifically to the MemTrax parameters across numerous populations (Bergeron et al., 2019; 
Zhou & Ashford, 2019).  MemTrax analysis with “machine learning” can further and more 
definitively classify cognitive function (Bergeron et al., 2020).   

MemTrax data sets particularly include all the RTs for each subject’s response and 
analysis of intraindividual variability in RT may also represent an important indicator of 
performance (Cousineau et al., 2016; Kennedy et al., 2013; Tse et al., 2010).  While individual 
RTs can be easily and simply analyzed for each subject and then related to the RevEx model, 
additional analyses are needed to determine an individual’s level of cognitive function or 
dysfunction more precisely. 

  In the MemTrax CRT, there is a variable lag between initial and repeated 
presentations, which can affect memory encoding (Ashford et al., 2011; Hockley, 1982). The 
degree of that effect, including the number of intervening items between initial and repeat 
presentations as well as the position of the repeat in the 50-item continuum, was not analyzed 
here; but this metric can be assessed as was previously shown (Ashford et al., 2011).  Further, 
there are 5 items, one from each of the five categories, repeated a second time, and the degree 
of strengthening of the encoding of the doubly repeated items can be assessed (Hintzman, 
2016).  Advancing the analytic development of this CRT paradigm may lead to even more 
powerful assessments. 

Given the global accessibility to the internet, there is essentially no verifiable information 
about the subjects with this isolated web-based testing that can be used as additional 
independent variables. For example, when asked to provide year of birth, of 344,165 presumed 
unique individuals who completed a test only 26,834 provided year of birth and even this 
information could not be independently verified in this study, though this factor was available 
from other studies of MemTrax and did show an age effect (Ashford et al., 2019).  Accordingly, 
select demographic and clinical data must be obtained through other means to further examine 
epidemiological effects on data during CRTs and establish clinical utility.  Data from the Brain 
Healthy Registry, which provides MemTrax as one of its assessment tools (Cholerton et al., 
2019; Nosheny et al., 2020), has demographic and cognitive function information for 
comparison; and such analyses are planned.  As noted above, MemTrax variables percent 
correct on RT significantly correlated with 6 of 8 MoCA domains (van der Hoek et al., 2019), and 
adding HITs and correct rejections and with different images and different performance 
instruction, numerous other cognitive and cortical domains could be assessed with this platform. 

The data presented here cannot be construed as representing a properly sampled 
population. With no clinical information, there was no clinical validation; thus, there was only a 
suggestion of what likely clinical indices would be.  For example, 2.2% of the population 
(consider 2 standard-deviations) had less than 70% correct, 15 HITs, 15 Correct Rejections and 
RT slower than1.4 seconds. For a cut-point for less impairment, 6.7% of the population 
(consider 1.5 standard-deviations) had less than 78% correct, 18 HITs, 18 Correct Rejections, 
and RTs slower than 1.23 seconds.  For a cut-point for less impairment, 15.7% of the population 
(consider 1 standard-deviation) had less than 84% correct, 20 HITs, 20 Correct Rejections, and 
RTs slower than 1.1 seconds.  Data from Table 1 could be used to estimate performance levels 
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below 1 or 1.5 deviations below the mean. Tests with fewer than 15 Correct Rejections (more 
than 10 False Alarms) can be considered invalid and may represent frontal-lobe dysfunction.   

 

CONCLUSIONS 

Prior studies on mild cognitive impairment (Koppara et al., 2015; Ratcliff et al., 2021) and 
Alzheimer’s disease (Gordon & Carson, 1990; Schumacher et al., 2019) have already shown 
the potential of the CRT approach for assessing disorders of learning, memory, and cognition.  
However, the analysis of the MemTrax data provided a different perspective on cognitive 
function than has been based on SDT methods alone and provided a novel perspective for 
understanding cognition and memory, revealing levels of complexity beyond the traditional 
paradigms.  Moreover, MemTrax has been shown to provide at least as much information as the 
Montreal Cognitive Assessment (MoCA) (Liu et al., 2021; van der Hoek et al., 2019).  The 
precision provided by MemTrax also suggests that MemTrax could improve the specification of 
the severity of cognitive impairment in early phases of Alzheimer’s disease (Ashford, 2008; 
Ashford & Schmitt, 2001; J. W. Ashford, Schmitt, F.A., Smith, C.J., Kumar, V., Askari, N. , 2019; 
Ashford et al., 1995), as well as the pace of change over time with repeat testing.  By assessing 
performance metrics and RT, MemTrax also has the capability to screen for many varieties of 
cognitive impairment and would be an ideal tool for use in the elderly US population for the 
Medicare Annual Wellness Visit (Ashford et al., 2022).  However, more testing in clinical 
populations is needed to implement on-line testing for broad clinical applicability and 
widespread screening. 
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Table 1. Tabulated data for 282,140 on-line MemTrax users, with percentiles (%iles) 

 

%C #C %ile  # HITs %ile  #CRs %ile  RT %ile 

60 30 0.3%    9 0.3%    9 0.3%  0.5 100.0% 

62 31 0.5%  10 0.4%  10 0.5%  0.6 99.2% 

64 32 1.0%  11 0.5%  11 0.7%  0.7 91.4% 

66 33 1.4%  12 0.7%  12 0.9%  0.8 71.6% 

68 34 1.8%  13 0.9%  13 1.1%  0.9 47.5% 

70 35 2.3%  14 1.2%  14 1.5%  1.0 28.2% 

72 36 2.9%  15 1.7%  15 1.9%  1.1 15.6% 

74 37 3.7%  16 2.3%  16 2.6%  1.2 8.3% 

76 38 4.9%  17 3.3%  17 3.5%  1.3 4.4% 

78 39 6.4%  18 4.8%  18 5.1%  1.4 2.3% 

80 40 8.6%  19 6.9%  19 7.7%  1.5 1.2% 

82 41 11.5%  20 10.1%  20 11.9%  1.6 0.6% 

84 42 15.5%  21 15.1%  21 18.6%  1.7 0.3% 

86 43 20.9%  22 22.8%  22 28.6%  1.8 0.2% 

88 44 28.0%  23 34.5%  23 43.1%  1.9 0.1% 

90 45 37.1%  24 52.1%  24 61.7%  2.0 0.0% 

92 46 47.9%  25 76.6%  25 82.8%    

94 47 60.1%          

96 48 72.9%          

98 49 85.1%          

100 50 94.9%  

 

  



20 
 

 

 

Figure 1. Number of subjects (left log scale) and percentage (right log scale) taking each 
number of tests.  344,165 presumably unique individuals took the test.  Of these, 256,949 took 
the test only one time, and 60,642 took the test only two times.  271 took the test more than 75 
times and 18 took the test more than 1,000 times. 
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Figure 2a,b,c,d.  

a) Number of tests (left scale) and percentage of tests (right scale) having the specific 
number of responses.  The optimal number is 25, consistent with the peak. 

 

 

 

b) Average number correct (HITs plus Correct Rejections) of tests (left scale) and percentage of 
correct responses (right scale).  While the number of correct responses ranged from 5 to 45, the 
optimal number, 25, has only an average number correct equal to 47.2.  
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c) Separated average number of HITs and Correct Rejections plotted for total responses.   The 
pattern is clearly not random (dashed lines); so, when the number of responses is less than 25, 
the number of HITs declines progressively with a relatively stable number of Correct Rejections, 
and when the number of responses is more than 25, the number of HITs is relatively stable, with 
the number of Correct Rejections progressively declining. 

 

 

 

d) Average number of responses for each number correct, from 30 (60% correct) to 50 (100% 
correct).  Note 25 is optimal, but all averages are above 25 except for 100% correct.  Less than 
37 correct is associated with an increasing number of responses associated with fewer correct 
trials. 
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Figure 3a,b. 

 

6) Number of tests performed for each number of correct responses. 

 

 

 

b) Total number of tests broken down to show as HITS and Correct Rejections. 
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4a,b) 

 

6) Cumulative percentage of tests from 30 correct (60%) to 50 correct (100%). 

 

 

 

b) Higher resolution of Figure a) to show the percent of tests more precisely for number correct 
31to 41. 
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Figure 5a,b,c.  

 

6) Plot of Number of Correct Rejections versus number of HITs.  The correlation showed 
essentially no relationship.  Among the 282,140 tests, all 231 possible variations of 
responses were represented.  The limitation of 5 HITs and 5 Correct Rejections was due 
to the limitation of the data set to those subjects with at least 60% correct, 30 correct 
responses. 
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b) Plot of average number of Correct Rejections versus number of HITs.  Note the slow 
decrement of correct rejections with a decrease of HITs from 25 down to 17, at which point, 
there is a drop of correct rejections, but then below 15 HITs there appears to be a strategy to be 
more careful have more correct rejections. 

 

 

 

c) Plot of average number of HITs versus number of Correct Rejections. Note the decrement of 
HITs from 25 to 22 Correct Rejection, then below 16 Correct Rejections, there is a sharp 
tendency to have more HITs, which appears to be a strategy to respond more, indiscriminately. 
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Figure 6. Number of tests for each millisecond RT, from 0.500 second to 2.00 seconds, for 
282,140 user tests.  Note that the number of tests has a skewed distribution. 
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Figure 7,a,b. 

 

a) Cumulative percentage of tests with respect to RT.  Note that level is below 1% until over 
0.620 seconds and 99% had RTs less than 1.570 seconds.  Median RT was 0.900 second, at 
50%. 

 

 

 

b) Inverse of a) at higher resolution to show the slower 15%, more than 1.1 second, and the 
slower 1%, more than 1.6 second. 
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Figure 8a,b. 

 

a) Negative natural logarithm of the cumulative percentage of RTs plotted against the RT.  The 
Pearson regression exponential curve explained nearly all the variance between 0.5 and 1.65 
seconds. 

 

 

 

 

b) Calculation of exponential curve back to number of RTs.  The curve clearly fits the distribution 
of the RTs.  The most responses were at 0.810 seconds followed by 0.839 and 0.864 seconds, 
while the peak of the RevEx model was at 0.833 seconds. 
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Figure 9a,b. 

 

a) Average number of responses for each HIT RT, showing that there is an increase in the 
average under 0.600 seconds, while there is an increase of variability for RTs longer than 1.5 
seconds.  The discordance between number of responses and decreased RT below 0.6 
seconds is associated with a strategy to respond more quickly, but with less discrimination. 

 

 

 

b) Same data, averaging RTs by number of responses.  Note sharp change of slope below the 
25-response mark, with progressive slowing for 10 or fewer responses. But there is a stable 
level of RTs with an increased number of responses, suggesting that by increasing the number 
of false alarms, that this component of accuracy was sacrificed for speed. 
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Figure 10a.b. 

 

a) Average number of correct responses for each RT.  The most correct responses occurred at 
an RT of about 0.650 second with about 46 correct (90%).  The average number correct fell 
sharply with faster RTs and more slowly with slower RTs, until an increased variability is seen, 
largely due to the smaller number of subjects with RTs slower than 1.4 seconds. 

 

 

 

 

b) Again, same data averaging RT by number of correct responses.  Note that 100% correct (50 
correct responses) is associated with an RT of 0.828 seconds.  With a decreased number of 
correct responses, there is a progressive slowing of RT until an RT of 1.079 second at 34 
correct (68%), but lower numbers of correct responses again show the discordance of RTs and 
performance with poorer levels of performance. 
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Figure 11a,b. 

 

a) Average number of HITs for each RT, showing the HIT component of correct responses.  
Note that the most rapid average RT is about 0.650 with an average of 24 HITs.  There is a 
relatively small number of faster responses, most with over 21 HITs.  Beyond 1.4 second, there 
is again a smaller number of tests, and the wide distribution of responses reflects that smaller 
number. 

 

 

 

b)  Same data as a), showing the optimal number of HITs, 25, is associated with an average RT 
of 0.837 seconds, with a progressive slowing associated with fewer HITs to an RT of 1.299 
second at 10 HITs.  With a smaller number of HITs, there is a faster RT, reflecting a lower level 
of discrimination. 
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Figure 12a,b. 

 

a) Average number of Correct Rejections for each RT, showing the Correct Rejection of 
component of correct responses.  Note that that over an RT of 0.650 seconds, there is 
essentially no relationship of Correct Rejections and RT, with about 22 Correct Rejections 
occurring on the average.  By contrast, for faster RTs, there is a steep speed/accuracy trade-off 
between speed and accuracy of Correct Rejections.  Again, the small number of tests above 1.4 
seconds show the dispersion with fewer tests, but there is no indication of a different slope. 
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b) Again, same data as a), showing an RT of 0.911 second for 25 Correct Rejections and a 
slight increase of RT down to 15 Correct Rejection, but there a faster RTs with lower numbers of 
Correct Rejections, which reflects the alteration of strategy (less inhibition) associated with this 
aspect of poor performance on the MemTrax test. 

 

 

Figure 13. The average correct response times broken down into True Positive and True 
Negative groups.  Note that the number of True Positive responses has a clear linear 
relationship with the Average Response Time.  The True Negative choices have very little effect 
when there are more than 15 (less than 10 false positive responses), but they have a negative 
relationship with RT below 15, suggesting that the increased number of false responses is 
related to making faster incorrect responses. 
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