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Abstract.
Background: Accessible measurements for the early detection of mild cognitive impairment (MCI) due to Alzheimer’s
disease (AD) are urgently needed to address the increasing prevalence of AD.
Objective: To determine the benefits of a composite MemTrax Memory Test and AD-related blood biomarker assessment
for the early detection of MCI-AD in non-specialty clinics.
Methods: The MemTrax Memory Test and Montreal Cognitive Assessment were administered to 99 healthy seniors with
normal cognitive function and 101 patients with MCI-AD; clinical manifestation and peripheral blood samples were collected.
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We evaluated correlations between the MemTrax Memory Test and blood biomarkers using Spearman’s rank correlation
analyses and then built discrimination models using various machine learning approaches that combined the MemTrax
Memory Test and blood biomarker results. The models’ performances were assessed according to the areas under the receiver
operating characteristic curve.
Results: The MemTrax Memory Test and Montreal Cognitive Assessment areas under the curve for differentiating patients
with MCI-AD from the healthy controls were similar. The MemTrax Memory Test strongly correlated with phosphorylated
tau 181 and amyloid-�42/40. The area under the curve for the best composite MemTrax Memory Test and blood biomarker
model was 0.975 (95% confidence interval: 0.950–0.999).
Conclusion: Combining MemTrax Memory Test and blood biomarker results is a promising new technique for the early
detection of MCI-AD.
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INTRODUCTION

As the aging population rapidly increases, the
prevalence of Alzheimer’s disease (AD) has con-
comitantly increased, becoming a major public health
challenge [1]. Currently, AD is an irreversible and
incurable disease. Early detection of mild cogni-
tive impairment (MCI), the symptomatic preclinical
phase of AD, is an important clinical focus, as it
can improve patients’ health and slow its progression
[2]. However, the early detection of MCI remains a
challenge, particularly in non-specialty clinics where
patients with MCI are frequently not recognized by
general practitioners, such as in primary care set-
tings. Moreover, cognitive impairment assessment
tools appropriate for primary care facilities are lack-
ing, contributing to these missed diagnoses [3].

Accuracy and efficiency are imperative for cog-
nitive evaluations. Most available memory and
cognition assessment utensils, such as the Montreal
Cognitive Assessment (MoCA) and the Mini-Mental
State Examination (MMSE), require professional
clinicians or specially trained psychologists to eval-
uate the results [4, 5]. However, routine cognitive
screening in non-specialty clinics or primary care set-
tings must be short, easy to use, friendly to seniors,
not influenced by education, culture, or language, and
have sufficient specificity and sensitivity [6].

Digital biomarkers, which are simple assessments
that require less time than traditional cognitive assess-
ments, are becoming increasingly applicable outside
memory clinics. For example, the MemTrax Memory
Test (hereafter called MemTrax) is an online cogni-
tive test ideal for routine use in non-specialty clinics
[7]. Specifically, MemTrax outperforms MoCA for
use outside of specialized memory clinics owing

to its simple self-testing methods and good diag-
nostic performance. Consequently, older individuals
with suspected cognitive abnormalities identified by
MemTrax could be admitted to memory clinics for
further evaluation, which is crucial for early diagno-
sis and treatment. Given that MemTrax is minimally
influenced by language or culture, it presents a prac-
tical solution for the early identification of MCI [8].

MemTrax has been validated in several studies and
developed into a simple online form [9]. MemTrax
uses simple picture recognition memory to evaluate
episodic memory, attention, and processing speed.
Therefore, it is a feasible tool for evaluating episodic
memory and other cognitive domains. Additionally,
visual stimuli minimize language and cultural influ-
ences, and the test’s simplicity also ensures that
people with different cognitive levels, from normal
to mild or moderately impaired, can understand and
follow instructions.

In clinical practice, differentiating MCI-AD from
other causes of MCI is critical. Currently, blood
biomarkers can detect AD pathology and identify AD
in the preclinical stages of the disease. Furthermore,
they are accessible and easy to implement for discrim-
inating AD from non-AD. Plasma amyloid-� (A�)
and phosphorylated tau (P-tau) levels reflect the two
principal pathological features of AD, namely brain
amyloidosis and tau pathology [10, 11].

Overall, we aim to develop a simple but reliable
screening method capable of early MCI-AD detection
in clinical services outside of specialized memory
clinics. Therefore, this study assessed the clinical
application of MemTrax in the Guangzhou Healthy
Aging and Dementia cohort for identifying individu-
als with MCI-AD and created a combined digital and
blood biomarker screening tool.
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MATERIALS AND METHODS

Study population

We consecutively recruited individuals from the
Guangzhou Healthy Aging and Dementia cohort. Par-
ticipants in this cohort included patients admitted
to memory-clinics in the Department of Neurology
at the First Affiliated Hospital of Sun Yat-Sen Uni-
versity and healthy older controls recruited from
the community between June 2020 and November
2022. All participants had completed detailed cogni-
tive function assessments including MMSE, MoCA,
Clinical Dementia Rating (CDR), Functional Activ-
ities Questionnaire (FAQ), MemTrax, blood tests,
and neuroimaging including MRI, PET-CT (AV45
and FDG), or both. Participants in this study were
screened from the cohort.

This study was approved by the ethics committees
of the First Affiliated Hospital of Sun Yat-Sen Univer-
sity. All participants or guardians provided informed
consent.

Classification of HC and MCI-AD

Vascular, traumatic, neurodegenerative, or other
diseases related to cognitive dysfunction were
excluded and classified into MCI-AD and healthy
control (HC) groups based on the following crite-
ria. The inclusion criteria of HC were no cognitive
impairment in the neurocognitive test and a CDR
score of 0. The diagnosis of MCI was based on a
modified version of the criteria from Petersen et al.,
included the following elements: 1) Self and/or infor-
mant report cognitive decline and objective cognitive
impairment in one or more domains in neuropsycho-
logical tests (scored at least 1.5 standard deviations
below the aged and education matched norm). 2)
Global CDR score = 0.5 or 0. 3) Daily activities and
social functions are mainly preserved, or at least that
impairment is minimal (A total FAQ score ≤ 5). 4)
No depression or other psychiatric conditions. 5) No
dementia [12, 13]. MCI-AD was diagnosed based on
a DSM-5 diagnosis for mild neurocognitive disorder
based on the Diagnostic and Statistical Manual of
Mental Disorders guidelines. Participants with visual
or motor impairments that could hinder their comple-
tion of MemTrax or patients unable to comprehend
the specific test instructions were excluded. Patients
with a history of mental or neurological diseases
that could lead to cognitive impairment were also
excluded.

Study procedure

Demographic and personal information, including
sex, age, years of education, living arrangements,
smoking habits, regular alcohol consumption, family
history of cognitive impairment, and medical his-
tory, were collected for each participant through a
comprehensive paper questionnaire. Subsequently,
the participants underwent neuropsychological tests,
including MMSE, MoCA, CDR, FAQ, and Mem-
Trax tests, in a relatively quiet room by well-trained
interviewers and experts. First, a study team member
collected the test results on paper, including the Mem-
Trax percentage of correct responses (MTx-%C), the
mean response time (MTx-RT), and the testing date
and time. Then, two study team members verified the
completed questionnaires and other neuropsycholog-
ical tests results separately.

MemTrax test

A comprehensive examination of the principles
and structure of MemTrax has been previously
published [9]. Concisely, MemTrax consists of a 50-
picture series comprising 25 novel pictures and 25
repeated pictures; one picture from each of the five
categories is repeated twice. Each picture is presented
for three seconds or until a behavioral response is
elicited. The participants are instructed to respond
swiftly by touching the screen only when presented
with a repeated picture. Following the completion
of the test, the program automatically calculates
and presents the MTx-%C, MTx-RT, and the date
and time of testing. The MemTrax composite score
(MTx-Cp) was calculated by dividing MTx-%C by
MTx-RT.

MoCA

Trained researchers administered the Beijing ver-
sion of the Chinese form of MoCA following standard
test guidance. Notably, the Beijing version has been
established as a reliable cognitive screening tool for
the Chinese elderly population regardless of educa-
tion level. MoCA scores range from 0 to 30, with
higher scores representing a better cognitive func-
tion. The test evaluates eight cognitive domains,
which include attention, executive function, memory,
language, visuospatial, abstract thinking, computa-
tion, and orientation. Each test requires 5–10 min of
administration, depending on the participant’s cogni-
tive capacity.



1096 W. Chen et al. / Early Diagnosis of Alzheimer’s Disease

Plasma biomarkers

Blood samples were collected systematically from
each participant at the study onset. Following col-
lection, the samples were centrifuged for 10 min at
4000 rpm (4◦C). Subsequently, the EDTA plasma
A�40, A�42, and P-tau181 concentrations were deter-
mined utilizing an ultra-sensitive Simoa technology
(Quanterix Corporation, Billerica, MA, US) via an
automated Simoa HD-X platform (GBIO, Hangzhou,
China) following the manufacturer’s protocol. The
Neurology 4-Plex E Assay Kit (Cat No:103670) and
P-tau181 Advantage V2 Assay Kit (Cat No: 103714)
were acquired from Quanterix and utilized accord-
ingly. The plasma samples were diluted 1 : 4 for
measuring. The calibrators and quality controls were
measured in duplicate to ensure accuracy and con-
sistency. Importantly, kits from the same lot number
were used in all sample measurements. The operators
were unaware of the participants’ information.

Predictive modeling

Predictive modeling was performed using five
common machine learning models: logistic regres-
sion, Naı̈ve Bayes, K-nearest neighbors, support
vector machine, and random forest. The models
were trained and evaluated using a five-fold cross-
validation algorithm. Specifically, the data were
randomly divided into five equal segments: four for
training and one for testing. This process was repeated
five times utilizing a different segment as the test set.
The area under the receiver operating characteristic
curve (AUC) was utilized to assess the performance
of the different models. The model building and eval-
uation processes were repeated multiple times to
reduce bias and ensure replicability. The hyperparam-
eter settings were selected based on previous research
that indicated their robustness to various data. Further
parameter tuning was not employed to avoid overfit-
ting and increase the clinical utility of the models
beyond the specific data used in this study. The mean
Decrease Gini for each predictor was calculated to
reflect the importance of each variable for the classi-
fication.

Statistical analyses

R version 4.1.3 (R Core Team, Vienna, Austria)
was used for statistic analysis; all figures were gen-
erated with R software. Baseline demographic and
clinical data and biomarker levels were analyzed

using chi-square tests, unpaired student t-tests and
Mann–Whitney U tests. Delong test was used to com-
pare whether there is a significant difference in AUC
between two models. Correlations between MemTrax
and blood biomarker levels were calculated utilizing
Spearman’s rank correlation analyses. p-values <0.05
were considered statistically significant.

RESULTS

Participant characteristics

We recruited 200 participants; 101 had MCI-AD,
and 99 were HCs. Table 1 details the demographic and
clinical manifestation of both groups; sex, age, living
state, tobacco use, and alcohol addiction did not dif-
fer between them. The mean years of education were
12 and 9 in the HC and MCI-AD groups, respec-
tively. Hypertension (p = 0.748), diabetes mellitus
(p = 0.838), and hypercholesterolemia (p = 0.612) did
not differ between the two groups. However, the MCI-
AD group had significantly more patients with a
family history of cognitive impairment than the HC
group (p = 0.014). Additionally, the MCI-AD group
had significantly lower MoCA scores than the HC
group. Finally, the P-tau181 (p = 0.005) concentra-
tions were significantly higher in the MCI-AD group
compared with HC group. However, the A�42/40 ratio
was significantly lower in the MCI-AD group when
comparing to HC group (p = 0.000).

Differentiating HC and MCI-AD

As shown in Table 1, MTx-%C was significantly
lower in the MCI-AD group compared with that in
the HC group (p < 0.0001). Correspondingly, MTx-
RT was markedly longer (p < 0.001) and MTx-Cp was
significantly lower (p < 0.0001) in the MCI-AD group
than those in the HC group.

Next, we performed logistic regression analyses
to evaluate the diagnostic accuracies of MemTrax
and MoCA. The AUCs for differentiating MCI-AD
and HC individuals were calculated and com-
pared between MemTrax (MTx-%C) and MoCA.
The AUCs for differentiating MCI-AD and HC
individuals were 0.770 (95% confidence interval
[CI]: 0.711–0.830) for MoCA and 0.752 (95% CI:
0.692–0.812) for MTx-%C. There was no signifi-
cant difference between the two AUCs (p = 0.662).
However, the MTx-RT (AUC: 0.605, 95% CI:
0.537–0.673) and MTx-CP (AUC: 0.700, 95% CI:
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Table 1
Demographic features and clinical manifestation of the participantsa

HC (n = 99) MCI-AD (n = 101) p

Age, y 67.0 ± 5.09 68.9 ± 8.43 0.058b

Female n, (%) 67 (67.7%) 66 (65.3%) 0.727d

Education, y 12 (9,12) 9 (9,12) 0.056c

Live alone (%) 5 (5.1%) 4 (4.0%) 0.746d

Smoke (%) 7 (7.1%) 12 (11.9%) 0.336d

Alcohol (%) 12 (12.1%) 12 (11.9%) 0.999d

Hypertension (%) 27 (27.3%) 25 (24.8%) 0.748d

Diabetes Mellitus (%) 14 (14.1%) 13 (12.9%) 0.838d

Hypercholesteremia (%) 9 (9.1%) 7 (6.9%) 0.612d

Family history (%) 17 (17.2%) 33 (32.7%) 0.014d

MoCA 26 (24,28) 21 (18,25) 0.000b

MTx-C% 86 (82,90) 76 (68,80) 0.000b

MTx-RT 1.404 ± 0.224 1.536 ± 0.287 0.000b

MTx-Cp 61.69 ± 11.77 50.11 ± 12.68 0.000b

Plasma A�42/40 0.076 ± 0.016 0.061 ± 0.013 0.000b

Plasma P-tau181 pg/mL 2.097 ± 1.107 2.775 ± 1.806 0.005b

HC, cognitive normal healthy control subjects; MCI-AD, subjects with mild cognitive impairment
due to Alzheimer’s disease; A�, amyloid-beta; P-tau181, phosphorylated tau 181.aValues are num-
ber (percentage) or mean ± standard deviation, median (interquartile range [IQR]); bold values are
statistically significant (p < 0.05);b Student’s t test;cMann-Whitney U testdChi-square test.

Table 2
Logistic regression results of MoCA, MemTrax test scores, and blood biomarkers

MoCA MTx-%C MTx-RT MTx-Cp P-tau181 A�42/40

Coefficients –0.4023 –0.1604 2.0386 -0.0773 0.3505 –72.8700
p 2.83E-11 8.78E-11 0.000647 2.80E-08 1.07E-02 8.99E-07
Cut-off 23 79 1.48 55.9 3.28 0.064
Accuracy 0.770 0.750 0.605 0.700 0.664 0.698
AUC 0.770 (95% CI: 0.752 (95% CI: 0.605 (95% CI: 0.700 (95% CI: 0.703 (95% CI: 0.691 (95% CI:

0.711-0.830) 0.692-0.812) 0.537-0.673) 0.636-0.764) 0.607-0.798) 0.613-0.794)
Compared to
MoCA (p)

– 0.6621 0.0004 0.1135 – –

MoCA, Montreal Cognitive Assessment; MTx-%C, MemTrax percent correct; MTx-RT, MemTrax mean response time; MTx-Cp, MemTrax
composite score; A�, beta-amyloid; P-tau181, phosphorylated tau 181.

0.636–0.764) AUCs were significantly lower than the
AUC for MoCA.

Table 2 lists the model’s accuracy and the MoCA
and MemTrax cutoff values. The best cutoff value
for discerning HCs from individuals with MCI-AD
based on MTx-%C was 79%, resulting in an MCI-AD
diagnostic accuracy of 75%. Similarly, when MTx-
Cp was used to classify the HC and MCI-AD groups,
the best cutoff value was 55.9%, resulting in an MCI-
AD diagnostic accuracy of 70%.

Correlation of MoCA and MemTrax

We further explore the relationship between MoCA
and MemTrax performance to prove the consis-
tency of the two tests and calculated the Spearman
correlation between them. Figure 1 showed that
MoCA was strongly correlated with MemTrax per-
formance. The higher the MoCA score, the better

the corresponding MTx-%C (r = 0.4335, p < 0.0001)
and MTx-Cp (r = 0.3429, p < 0.0001). On the con-
trary, MoCA was negatively correlated with MTx-RT
(r=-0.2504, p = 0.0004).

Correlation of plasma biomarkers and MemTrax
performance

The P-tau181 and A�42/40 plasma biomarkers dif-
fered between the MCI-AD and HC groups (Table 1).
The P-tau181 and A�42/40 AUCs for differentiating
individuals with MCI-AD and HCs were 0.703 (95%
CI: 0.607–0.798) and 0.691 (95% CI: 0.613–0.794),
respectively (Table 2). Furthermore, a high P-tau181
level was associated with worse MTx-%C perfor-
mance (r = –0.3683, p = 0.0030), a long MTx-RT
(r = 0.4990, p < 0.0001), and a low MTx-Cp (r =
–0.5057, p < 0.0001) in MCI-AD. Additionally, a
high A�42/40 level was associated with a high MTx-
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Fig. 1. Strong relationship between MoCA and MTx-%C (A), MTx-RT (B), and MTx-Cp (C).

Fig. 2. Relationship between MemTrax test scores, MoCA, and blood biomarkers in each group. A-C) The correlation between P-
tau181 and MTx-%C (A), MTx-RT (B), and MTx-Cp (C). D) The correlation between P-tau181 and MoCA. E-G) The correlation between
A�42/40 and MTx-%C (E), MTx-RT (F), and MTx-Cp (G). H) The correlation between A�42/40 and MoCA. n(MCI-AD)=101, n(HC)=99.

Cp (r = 0.3016, p = 0.0163) and a long MTx-RT (r
= –0.2896, p = 0.0213) in MCI-AD. On the contrary,
A�42/40 level was not related to MTx-%C. No associ-
ation was found between MemTrax performance and
plasma biomarkers in HC (Fig. 2). Also, MoCA was
not significantly correlated with blood biomarkers in
neither MCI-AD nor HC group (Fig. 2D, H).

Machine learning analysis

Five machine-learning approaches were evalu-
ated to differentiate between the MCI-AD and HC
groups (Table 3). When MTx-%C was the only
variable, all five algorithms had similar effects (all

p > 0.05); the AUCs were: logistic regression: 0.732,
95% CI: 0.670–0.794, naı̈ve Bayes: 0.752, 95% CI:
0.692–0.812, and each of the other three algorithms:
0.780, 95% CI: 0.722–0.838. When P-tau181 and
MTx-%C were used, the AUC values of all mod-
els remained similar to those obtained using only
MTx-%C (all p > 0.05), except for the random forest
model. The random forest model with the MTx-%C
and P-tau181 variables had an AUC of 0.933 (95% CI:
0.892–0.974; Fig. 3A). Finally, when A�42/40 was
added to the random forest model, the AUC reached
0.975 (95% CI: 0.950–0.999; Fig. 3A). The MemTrax
and MoCA AUCs did not differ when blood biomark-
ers were added (p > 0.05). Thus, the random forest
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Table 3
AUC values of different machine learning approaches to classify MCI-AD and HC

Algorithm Variable(s) AUC Variable(s) AUC

Logistic Regression MTx-%C 0.732 (95% CI: 0.670-0.794) MoCA 0.770 (95% CI: 0.711-0.830)
MTx-%C+P-tau181 0.759 (95% CI: 0.689-0.830) MoCA+P-tau181 0.724 (95% CI: 0.648-0.800)
MTx-%C+P-tau181 + A�42/40 0.766 (95% CI: 0.694-0.838) MoCA+P-tau181 + A�42/40 0.757 (95% CI: 0.687-0.828)

Naive Bayes MTx-%C 0.751(95% CI: 0.692-0.812) MoCA 0.770 (95% CI: 0.711-0.830)
MTx-%C+P-tau181 0.748 (95% CI: 0.672-0.824) MoCA+P-tau181 0.712 (95% CI: 0.632-0.794)
MTx-%C+P-tau181 + A�42/40 0.778 (95% CI: 0.707-0.849) MoCA+P-tau181 + A�42/40 0.775 (95% CI: 0.704-0.848)

KNN MTx-%C 0.780 (95% CI: 0.722-0.838) MoCA 0.770 (95% CI: 0.711-0.830)
MTx-%C+P-tau181 0.780 (95% CI: 0.7120.848) MoCA+P-tau181 0.788 (95% CI: 0.718-0.858)
MTx-%C+P-tau181 + A�42/40 0.807 (95% CI: 0.742-0.872) MoCA+P-tau181 + A�42/40 0.786 (95% CI: 0.720-0.853)

SMV MTx-%C 0.780 (95% CI: 0.722-0.838) MoCA 0.770 (95% CI: 0.711-0.830)
MTx-%C+P-tau181 0.753 (95% CI: 0.683-0.823) MoCA+P-tau181 0.771 (95% CI: 0.702-0.841)
MTx-%C+P-tau181 + A�42/40 0.801 (95% CI: 0.735-0.868) MoCA+P-tau181 + A�42/40 0.800 (95% CI: 0.737-0.863)

Random Forest MTx-%C 0.780 (95% CI: 0.722-0.838) MoCA 0.770 (95% CI: 0.711-0.830)
MTx-%C+P-tau181 0.933 (95% CI: 0.892-0.974) MoCA+P-tau181 0.918 (95% CI: 0.683-0.823)
MTx-%C+P-tau181 + A�42/40 0.975 (95% CI: 0.950-0.999) MoCA+P-tau181 + A�42/40 0.957 (95% CI: 0.923-0.991)

MTx-%C, MemTrax percent correct; MTx-RT, MemTrax mean response time; MTx-Cp, MemTrax composite score; MoCA, Montreal Cognitive Assessment; A�, amyloid-beta; P-tau181,
phosphorylated tau 181.
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Fig. 3. Machine learning prediction results for discrimination of MCI-AD and HC. A) ROC curves and AUC values of random forest
model for classifying MCI-AD and HC using different combination of variables. B) ROC curves and AUC values of different machine
learning approaches using all four variables: MTx-%C, P-tau181, and A�42/40. C, D) Variable importance plot for the random forest model
for discrimination of MCI-AD and HC using different combination of variables: MTx-%C, P-tau181, A�42/40 in (A).

model was the best-performing classifier for discern-
ing individuals with MCI-AD and HC among the five
machine-learning approaches. Furthermore, combin-
ing blood biomarkers with MemTrax enhanced the
classification performance compared to MemTrax or
plasma biomarkers independently. Finally, MemTrax
had the same verification efficiency as MoCA using
the combination models.

We further calculated the Mean Decrease Gini for
each predictor variable in the random forest model,
which reflects the importance of each variable for
the classification. Figure 3C and 3D shows the Mean
Decrease Gini of each predictor variable in each ran-
dom forest model in Fig. 3A. The Mean Decrease
Gini values indicate that MTx-%C is an essential vari-
able for discriminating MCI-AD from HC using the
final random forest model (Fig. 3).

DISCUSSION

This study validated a digital cognitive assess-
ment using MemTrax in patients from the Guangzhou
Healthy Aging and Dementia cohort; the AUCs were
0.752 for MTx-%C, 0.605 for MTx-RT, and 0.700
for MTx-CP. Thus, MTx-%C was the best index for
differentiating individuals with MCI-AD from HCs.
Additionally, MTx-%C scores ≥ 79% had an accu-
racy of 75%.

As a screening tool for early detection of MCI,
MemTrax has its pros and cons. Firstly, MemTrax
is less time-consuming (1.5–2.5 min) than traditional
cognitive tests, such as the MoCA (5–10 min), which
makes it suitable for large-scale screening. In addi-
tion, MemTrax test is less affected by language and
education levels because MemTrax test is based on
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recognition of pictures. However, it should be noticed
that MemTrax test does not accurately reflect the
function of different cognitive domains although its
outcomes have been reported to be correlated with
multiple cognitive domains [7]. In contrast, MoCA is
able to evaluate multiple cognitive domains, which is
more suitable for clinical practice.

P-tau181 and A�42/40 are two primary biomark-
ers for diagnosing AD [14–16]. Plasma P-tau181 and
A�42/40 correlate with pathological cerebrospinal
fluid A�42/40 concentrations and A�-positron emis-
sion tomography scans at different stages of AD
[17]. We found that the P-tau181 and A�42/40 AUCs
for differentiating individuals with MCI-AD from
HCs were 0.703 and 0.691, respectively, similar to
a previous study [18]. In addition, we found that the
MemTrax score had a good correlation with P-tau181
and A�42/40.

A previous study reported better predictions of
longitudinal changes in Mini-Mental State Exam-
ination results and the progression from MCI to
AD dementia after integrating plasma neurofilament
light chain, P-tau, and A�42/40 variables into a pre-
dictive model [19]. Furthermore, combining plasma
P-tau217, APOE genotype, memory, and executive
function has been shown to produce higher accu-
racy [20]. Studies have already demonstrated that
MemTrax can differentiate patients with MCI from
HCs [8]. Subsequently, we found that MemTrax
results combined with AD-related blood biomarkers
could also distinguish patients with MCI-AD from
HCs. Notably, MemTrax with P-tau181 and A�42/40
resulted in a significant AUC increase, from 0.780 to
0.975 (Fig. 3A). Therefore, we could identify MCI-
AD at an early stage using a simple self-assessment
(i.e., MemTrax) combined with AD-related blood
biomarkers. This result is valuable because early
identification can lead to early interventions that
potentially delay disease progression to AD, reducing
the burden on families and society.

One limitation of our study was the age difference
between the two groups, which was relatively large;
however, it was statistically insignificant (p = 0.058).
Furthermore, owing to the study’s cross-sectional
nature, we could not track disease progression over
time, which is critical for early intervention. How-
ever, a longitudinal study (the Guangzhou Healthy
Aging and Dementia study) was conducted based on
the results of this study for prediction of the pro-
gression from MCI to AD. Most importantly, our
study is a case-control study based on retrospective
data, which may introduce selection bias and con-

founding factors. Therefore, our discriminant rule
should be interpreted as the Phase I development
of a new diagnostic tool for MCI-AD rather than
a definitive diagnostic criterion. Further studies are
needed to validate and optimize our discriminant rule
in prospective cohorts with different settings and pop-
ulations.

In conclusion, we assessed the clinical applica-
tion of the MemTrax in the Guangzhou Healthy
Aging and Dementia cohort for identifying individu-
als with MCI-AD and created a combined digital and
blood biomarker screening tool, which is promising
to enhance the early detection of MCI-AD.
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