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Abstract. In this issue, an article by Waring et al. provides a meta-analysis of the effects of apo-lipo-protein E (APOE) genotype
on the beneficial effect of acetyl-cholinesterase inhibitors (AChEIs) in patients with Alzheimer’s disease (AD). There was
no significant effect found. As of 2015, AChEI medications are the mainstay of AD treatment, and APOE genotype is the
most significant factor associated with AD causation. This lack of a significant effect of APOE is analyzed with respect to the
“Cholinergic Hypothesis” of AD, dating from 1976, through the recognition that cholinergic neurons are not the sole target of
AD, but rather that AD attacks all levels of neuroplasticity in the brain, an idea originated by Ashford and Jarvik in 1985 and
which still provides the clearest explanation for AD dementia. The “Amyloid Hypothesis” is dissected back to the alpha/beta
pathway switching mechanism affecting the nexin-amyloid pre-protein (NAPP switch). The NAPP switch may be the critical
neuroplasticity component of all learning involving synapse remodeling and subserve all learning mechanisms. The gamma-
secretase cleavage is discussed, and its normal complementary products, beta-amyloid and the NAPP intracellular domain
(NAICD), appear to be involved in natural synapse removal, but the link to AD dementia may involve the NAICD rather than
beta-amyloid. Understanding neuroplasticity and the critical pathways to AD dementia are needed to determine therapies and
preventive strategies for AD. In particular, the effect of APOE on AD predisposition needs to be established and a means found
to adjust its effect to prevent AD.

Keywords: Alzheimer disease, cholinesterase inhibitors, ApoE, acetylcholine, neuronal plasticity, MAPT protein, human
amyloid beta-protein, leptin

As of 2015, the main therapy for Alzheimer’s dis-
ease (AD) is treatment with an acetyl-cholinesterase
inhibitor (AChEI), with four drugs approved by the
FDA for this purpose: tacrine, donepezil, galantamine,
and rivastigmine [1]. Only one other drug, memantine,
is approved by the FDA for AD treatment, and it is usu-
ally used as a supplement to an AChEI. Currently, the
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major factor associated with AD causation, including
age of onset, is the apolipoprotein E (APOE) genotype
[2–4]. A persistent question regarding the treatment of
AD has been whether specific APOE genotypes might
influence the therapeutic efficacy of any intervention.
Many studies of therapeutic agents have sought to
stratify samples according to APOE genotype, with
relatively little clear determination that APOE geno-
type has a substantial effect on therapeutic benefit in
AD patients. An article in this issue by Waring et al.
[5] provides an important analysis of the relationship
between APOE genotype and AChEI benefit across
three studies of placebo versus donepezil, with 170 of
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the placebo subjects and 165 of the donepezil subjects
having APOE �4 genotype available. The conclusion is
that there is no significant relationship between APOE
genotype and medication response. The findings do
not prove that there is absolutely no interaction, but
the magnitude of an effect, if it exists, is too small or
too variable to be detected by the methodologies used.
This negative finding is important for considering the
precise roles APOE genotype and AD pathology have
in leading to dementia and what point in the AD process
therapy should target.

The “cholinergic hypothesis” of AD [6] began
with findings of decrease of the enzyme choline
acetyltransferase in AD patients by three labs in the
United Kingdom in 1976 [7–9]. These findings led to
the first test of the AChEI treatment of AD patients in
a double-blind study in 1981 [10] and a demonstration
of enhanced memory in this patient population in
1982 [11]. There was also a demonstration that the
cholinergic neurons most affected in AD originated in
the nucleus basalis of Meynert [12] and that there was
a relationship between loss of cholinergic innervation
and amyloid deposition in neuritic plaques [13]. Based
on the cholinergic dysfunction and preliminary ther-
apeutic findings, AChEI medications were tested and
then found to benefit AD patients clinically, leading to
the first FDA approval of a medication for AD, tacrine,
in 1993 [14]. Of many cholinergic therapies, only the
AChEI approach has shown consistent benefit, though
that benefit has been considered “modest” [15, 16],
setting the AD clock back less than 6 months [17].
However, AChEI treatment slows the progression of
hippocampal atrophy, suggesting that this class of drug
has a neuroprotective effect against AD pathology
[18, 19].

In spite of the strength of the cholinergic hypoth-
esis, it was apparent that AD was much more than a
disease simply attacking cholinergic neurons. Addi-
tionally, monaminergic neurons are attacked early in
the disease process [20], including noradrenergic neu-
rons [21, 22], serotonergic neurons [23], and neurons
with NMDA glutamatergic receptors [24]. Further, AD
has a specific pattern of attacking the cerebral cortex
[25], which also has a temporal order to its progression
[26]. At all levels, neuropathology, psychopathology,
and disruption of social function, AD pathology affects
systems related to the formation of new memory [27].
Accordingly, AD pathology must be a process attack-
ing the fundamental neuroplasticity mechanisms of the
brain [10, 28, 29].

When the major protein associated with the neuritic
plaques was identified as amyloid-� (A�) [30] and

numerous young-onset AD genes were associated with
amyloid production and metabolism, the “amyloid
hypothesis” was invoked to explain AD [31–33].
However, this hypothesis has failed to provide an
explanation for the full range of AD pathology or
lead to any benefit for AD patients, with most studies
showing substantial harm in treating the amyloid
depositions associated with AD [34–38]. Fatal prob-
lems for the amyloid hypothesis have been that A� is
a highly turned-over normal protein in the brain [39],
and A� levels decline in the cerebrospinal fluid (CSF)
in association with APOE genotype, not tau pathology
[40], nor CSF tau levels, nor dementia [41, 42].
Further, A� levels in the brain do not predict the age
at onset, disease duration, or dementia severity [43].
Also, neuritic plaques have a poor relationship with
the density and distribution of tau pathology [44]. The
amyloid hypothesis describes a role for A� in causing
AD, but does not explain the normal role of A�, which
is highly conserved evolutionarily, or how that normal
role is related to the vulnerability to AD pathology.
Importantly, the amyloid hypothesis has not provided
a link to the disorder of neuroplasticity central
to AD [45].

The association between APOE and AD is the
strongest genetic risk factor in medicine [46]. With
approximately 50% of AD causation attributable to
the APOE �4 allele and considerable protection with
APOE �2, the APOE genotype can be considered to
explain 90% of AD [47]. One of the most important
unresolved issues in AD study is the specific role of
the APOE molecule [48, 49], including its evolution,
its normal action relevant to neuroplasticity and AD,
and how that action is differentially affected by the
three common alleles—�2, �3, and �4, leading to a
substantial increase of AD risk associated with the �4
and a decrease associated with the �2. While APOE has
a major role in chaperoning lipids, particularly choles-
terol, it also has a role in A� processing [50–52]. It has
been recently established that APOE genotype influ-
ences the A� levels in the CSF and brain [40–42],
though both biomarkers are unrelated to the develop-
ment of dementia.

Another issue is whether there is any influence of
APOE on the rate of decline in AD patients once
dementia has developed. The article by Waring et al.
in this issue [5] notes that a positive APOE �4 allele
status is associated with greater magnitude of cogni-
tive change in placebo-treated patients compared with
patients without an APOE �4 allele. Consequently, dur-
ing the time of most measurable progression, the APOE
protein appears to have some impact on the placebo
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effect. As noted in the article, this effect could be
related to test-retest practice effects of the instrument
used in the studies, the ADAS-Cog, possibly related
to the subjects with the APOE �4 allele having more
severe underlying deficits of learning. However, gen-
erally, there is no indication that the APOE protein has
any impact on the progression of dementia once it has
begun or the rate of development of the AD pathology.
As a genetic factor, APOE appears to play a major
role in predisposing to AD through a prodromal effect
related to A� [53, 54], an effect that presumably begins
well before birth when APOE is first being synthesized
in the brain. But there appears to be little direct effect of
APOE genotype on the progression of dementia once
the mild cognitive impairment phase has developed
[42]. In spite of extensive study, no treatment related
to the APOE factor has yet been developed either to
prevent AD or to slow the progression of dementia
[55].

The finding that APOE genotype has no significant
effect on AChEI treatment is consistent with the per-
spective that the effect of APOE has a long-term impact
on the development of A� pathology [56], but that
APOE has no specific or significant effect on demen-
tia, its progression, or its treatment. Also relevant is the
perspective that there are multiple pathological man-
ifestations in AD with various temporal relationships
to age, but no clear cause-and-effect relationships with
each other [57]. Each AD-related process presumably
has its own biological basis which suffers an increased
failure rate with aging described by survival dynamics
[58], similar to the aging effect on dementia devel-
opment associated with APOE genotype [47]. More
accurate measurements of the severity of the AD man-
ifestations and defining their precise courses indexed
to the temporal progression of dementia would be of
great help for defining AD and determining the benefits
of treatment [59–61]. Here, the results of the Waring
et al. [5] analysis establish an important point for distin-
guishing where different causal and therapeutic factors
may be affecting AD.

Given the long-term use of AChEI therapy, further
understanding of this therapy is warranted. A recent
study has pointed out the different effects of the various
AChEI agents on brain cholinergic function [62, 63].
Specifically, some agents induce increased levels of
AChE, while others do not. Further, the long-term ben-
efits of the various AChEI agents appear to be different
[64–66], with galantamine having a longer duration
of benefit than donepezil [67, 68]. The rapid deteri-
oration associated with the termination of donepezil
treatment has been attributed to the underlying progres-

sion of the disease [15], but a more likely explanation
is that the AChEIs actually slow the disease process
slightly while the elevated levels of AChE, induced by
the AChEI treatment, trigger an anti-cholinergic cri-
sis when AChEI agents are removed, leading to an
increase rate of AD pathological damage which is not
reversible on restarting the medication. However, the
benefit of starting a treatment seems to occur regard-
less of prior treatment [69]. The study of Waring et al.
emphasizes the importance of determining whether
there are factors which influence medication efficacy
for AD patients.

While the amyloid hypothesis and APOE genotype
have failed to provide an AD therapy, the solid foun-
dations of these factors should be examined for how
they relate to the therapeutically relevant choliner-
gic hypothesis, other neurotransmitter dysfunctions,
and the distinct anatomical neuropathological distri-
bution of AD, particularly with regard to the central
issue of neuroplasticity. The first aspect of the amy-
loid hypothesis that needs to be emphasized is the
role of the amyloid pre-protein itself. To understand its
role, this protein should be referred to as the “nexin-
amyloid pre-protein” (NAPP), because this pre-protein
is catabolized by two equally important enzymes, an
�-secretase and a �-secretase. The �-secretase has
two relevant variations, ADAM-10 and ADAM-17
[70–72], and leads to the formation of the nexin pro-
tein and the creation of new synapses. However, most
research has been done on the �-secretase action,
whose transmembrane product is cleaved by a �-
secretase, resulting in the formation of A� and the
NAPP-intracellular domain (NAICD). Note that for
every A� molecule produced, an NAICD molecule is
produced. Both A� and NAICD are toxic to synapses
and are likely involved in their routine removal, as
is appropriate. Actually, the animal data suggesting a
relationship between A� and AD may be an artefact
of this natural synaptoxicity, not an indication that A�
has any role in the cascade leading to dementia. The
decision of whether the NAPP will pass down the �
or � pathway (the NAPP-switch) is the critical neuro-
plasticity decision at all activated synapses involved in
the formation of a new memory [42, 48, 73, 74]. Since
synapses have relatively short half-lives, the creation
and removal of synapses is a major normal activity of
the brain (the human brain builds and demolishes tril-
lions of synapses in every 24-h period). However, the
absolute number of synapses actually decreases over
time, as decades of life pass; thus there must be a slight
imbalance towards a tendency for the NAPP switch to
follow the � pathway. This tendency for increased �
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processing of NAPP with aging may be creating a vul-
nerable target for AD pathology and could be the major
factor leading to dementia, the “retrogenesis” of neu-
rons, and cognitive dysfunction [75]. And early on in
the development of AD-related dementia, there is an
increase of neuroplastic activity [76], which is likely
accelerating the AD pathological process as described
here.

Of considerable importance at the NAPP switch,
the control point of NAPP metabolism, is that
acetylcholine, norepinephrine, and serotonin, all neu-
rotransmitters with key roles in learning and memory
[77, 78] and each disrupted by AD, all have criti-
cal roles in activating the �-secretase [70–72]. The
common mechanism related to neuroplasticity, as it
pertains to AD, is likely to be neurotransmitter signal-
ing (involving calcium and a complex cascade of other
cell proteins) modulating protein kinase C (PKC).
PKC plays roles in activating the �-secretase cleav-
age of NAPP and blocking the phosphorylation of
tau [79–82], actions which lead to the remodeling of
synapses, thus serving the basis of formation of new
memory substrates [83–86]. The effect of various neu-
rotransmitters on PKC leading to control of the NAPP
switch could be the unifying principle of neuroplastic-
ity, subserving all types of learning and detail memory
formation [87]. Since PKC is disrupted in AD [88],
it is in a key position to be the protein mediating the
several disparate factors which lead to AD pathology.

When �-secretase is not activated, the NAPP enters
the default � pathway, to be cleaved by the �-
secretase. The trans-membrane fragment is further
cleaved by the �-secretase to produce A� and NAICD
[89]. The A� and NAICD products are destructive
to synapses, presumably having the critical normal
role of pruning those synapses no longer germane to
the specific neurocognitive analysis being modified.
Under normal circumstances, A� may be acting with
the metabotropic glutamate receptor 5 to activate Fyn,
which will in turn phosphorylate tau [90], and the
NAICD is released inside the synapse and appears to
have a specific role in gene expression and phosphory-
lating tau [74, 91, 92]. The NAICD may have a specific
normal role to cause retraction of the synaptic machin-
ery. However, under pathological circumstances the
�-secretase product A� is incorporated into neuritic
plaques. Neuritic plaques themselves have not been
shown to have a role in causing cognitive dysfunc-
tion in humans. During pathological circumstances,
the production of the NAICD is essential for behavior
deficits to develop in transgenic mice [93]. A poten-
tially important note at this juncture is that the A�42 is

thought to be more related to pathological changes than
the A�40. However, the complementary NAICD of
A�42, NAICD-42, may represent the actual next patho-
logical factor in the progression of the AD process
leading to dementia. The production of the patholog-
ical NAICD likely triggers the hyperphosphorylation
of tau [94], which leads to the formation of paired-
helical filaments and then neuropil threads, which are
the neurites defining the pathological senile plaques.
As the neuropil threads are transported retrogradely in
neuronal processes, they clog those processes, leading
to massive amputation of axonal and dendritic trees,
with clearly consequent loss of neuronal processes [95]
and dementia. It is this tauopathic damage of neuronal
processes which provides the clearest explanation for
the extensive synapse loss of AD. Presumably the neu-
rofibrillary tangles result from the retrograde transport
of the neuropil threads all the way back to the cell body,
leading to eventual cell death due to neurofibrillary
congestion, but it is unlikely that the neurofibrillary
tangles or cell death are the direct cause of the synapse
loss or the AD dementia. And it is synapse loss which
is most closely related to memory decline and demen-
tia in AD [96, 97]. The loss of neuronal process trees
would lead to large-scale release of tau protein into the
extracellular space and also explain the elevation of tau
in the CSF in relation to dementia [42].

Regarding the other FDA approved drug for AD, the
locus of the beneficial action of memantine is the sta-
bilization of the NMDA receptor, which has a central
role in neuroplasticity, particularly in the branching of
neural processes [98]. Stabilization of this receptor is
clinically beneficial, at least in moderate to severely
demented patients with AD. There is also evidence
that memantine may extend the life-expectancy of AD
patients to near normal [99].

There are numerous other agents which may pos-
itively or protectively modulate the AD pathological
cascade, and many drugs are mentioned in articles cited
in this commentary. Enhancement of several neuro-
transmitter systems may potentially lead to a long-term
augmentation of �-secretase activity and reduction
of �-secretase activity [20]. Monaminergic systems
ascending from the brainstem can already be manip-
ulated, for example, with the currently available drug
formoterol [100]. However, so far, experimental treat-
ments of these systems have not yet led to an AD
treatment. The adipocyte-derived leptin, a pleiotropic
hormone, decreases A� production and tau phosphory-
lation [101], representing another potential therapeutic
avenue. There remains interest in whether certain
NSAIDs can selectively modify the cleavage of the
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�-secretase to decrease A�42 production [102] and
prevent AD [103]. Inhibition of Fyn, a kinase which
can phosphorylate tau, could potentially be blocked
by saracatinib [104, 105]. It has also been long known
that lithium and valproic acid can inhibitor glycogen-
synthase-kinase 3�, which can phosphorylate tau, but
there has been no evidence that these medications
affect AD progression. Further, there are numerous
agents which may be used in combination to slow or
prevent the AD process [106]. With a broader under-
standing of the cascade of AD pathology, there are
numerous points of potential intervention in the AD
pathogenic pathway [107].

The major missing contribution for developing AD
prevention strategies is an adjustment for APOE phe-
notype to prevent the prodromal changes of AD which
lead to dementia [55]. Investigations of APOE would
be great facilitated by acceptance of clinical APOE
genotyping.

As of 2015, the only established interventions which
affect AD pathology are the augmentation of cholin-
ergic activity with AChEIs and stabilization of the
NMDA effector mechanism with memantine. How-
ever, attention to how each step of the pathological
pathways is affected by APOE and other causal factors
will hopefully lead to the development of programs,
probably beginning at birth or before, which will pre-
vent the entire AD pathological process.
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