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Abstract
In the adult human brain, approximately one trillion synapses are constructed and deconstructed daily as part of normal learning and memory. A growing body of 
evidence suggests that Alzheimer’s disease (AD) is characterized by dysregulated neuroplasticity processes that initially shift the balance toward synaptic loss causing 
poor episodic memory, while later changes induce synaptic slaughter causing dementia. Inheritance of a single copy of the apolipoprotein E (APOE) ε4 allele has 
been shown to increase the risk of AD by 3-4-fold, with homozygosity associated with a 12-16-fold increase in risk. Further, there is a decrease of risk associated 
with the APOE ε2 allele. The pathological consequence of APOE genotype, accounting for the vast majority of AD risk, has led to intense efforts to understand 
the mechanistic basis of the interplay between APOE status and loss of synapses. Studies conducted across the age spectrum from infancy through senescence have 
demonstrated that APOE ε4-positive status is associated with increased brain activity and macromolecule turnover in young healthy individuals, with the reverse 
extant in elderly subjects. The recent demonstration that the brains of APOE ε4-positive healthy young adults utilize approximately 16% more of the lipid membrane 
constituent docosahexaenoic acid (DHA) opens the possibility that part of the increased long-term neurotoxicity might be explained by pharmacokinetics. For 
example, if the hippocampal neurons of two individuals possess the same susceptibility to either an endogenous or exogenous stress factor, the neurons with the 
highest turnover of proteins, lipids, and other macromolecules would experience a larger integrated dose of detriment. Small differences in pharmacokinetic effects 
might be amplified by the extremely long prodromal phase of AD, i.e., average age of presentation for a homozygous ε4 is about 68 years of age.
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Introduction
A central concept in toxicology is the dose-response relationship 

[1], with toxicity usually increasing with total dose. Dose-response 
curves can take different shapes including linear, sigmoidal, survival 
(Gompertz curve), natural logarithmic, parabolic, and even an inverted 
u-shape in the case of hormesis [2]. Host factors [3] and co-exposures 
can play an important role in susceptibility to a variety of factors [4]. 
Many tissues exhibit a redundancy which when exceeded heralds the 
onset of clinical symptoms [5]. 

Parkinson’s disease (PD) reportedly follows the pattern of a disease 
process whose symptoms are manifested when the number of surviving 
neurons decreases below a certain level. The earliest symptoms of 
motor dysfunction have been consistently estimated to present at 
around 30% loss of the dopaminergic neurons in the substantia nigra 
of the basal ganglia [6]. Similarly, the early symptoms of memory loss 
associated with Alzheimer’s disease (AD) also present after a large 
number of neurons have already been lost [7]. In contrast with the 
30% neuronal loss of dopamine neurons calculated to be associated 
with the appearance of PD symptoms, the more diffuse pathology of 
AD, affecting several types of neurons, cortical regions, and neuronal 
systems, renders quantitative estimation of AD loss more difficult, 
though the factor most closely related pathologically to dementia is 
synapse loss [8,9]. 

While the neuropathology of Alzheimer’s disease, first described 
by Alzheimer in 1906 [10] is characterized by the presence of neuritic 
plaques (composed of β-amyloid deposits and neurites made of 

hyperphosphorylated microtubule associated protein-tau, pTAU) [11] 
and intracellular neurofibrillary tangles (composed of pTAU) [12], 
these pathological features are no longer considered as causative of 
dementia or AD itself. Rather, these pathological hallmarks of AD are 
now viewed more appropriately as representing the incidental results or 
scars of complex processes which lead initially to impaired neuroplastic 
processes subserving memory and later to synaptic slaughter causing 
dementia [13,14]. 

In principle, AD is a disease of neuroplasticity [15-18]. Several 
different molecules and molecular processes which are central to 
neuroplasticity are likely candidates for contributing to the episodic 
memory impairment characteristic of early AD and the dementia of 
later AD phases, including projections from the brain stem [19,20] 
by the norepinephrine neurons of the locus coeruleus [21] and 
serotonergic neurons of the midbrain raphe nuclei [22]. Despite the 
diversity of candidates there is general agreement that loss of synapses 
is the closest correlate of the memory impairment and dementia of AD 
across the continuum of cognitive dysfunction [23,24].

It is notable that the brain regions most susceptible to AD-associated 
synaptic loss are regions with normally high rates of synapse turnover, 
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both formation and removal, and a high number of synaptic connections 
per neuron, particularly the hippocampus [25]. The importance of 
synaptic remodeling, including by exuberant synaptogenesis and 
synaptolysis during critical periods of brain development [26], for 
normal adult brain function [27], and in pathological processes [28] 
has stimulated intense study. This effort has revealed that hundreds 
of different proteins displaying a series of signaling and structural 
functions play a role in synapse formation and normal removal [29]. 
In addition to the complex array of protein interactions, the formation 
of and remodeling-associated loss of synapses also involves significant 
turnover of a number of lipid components of the pre- and post-synaptic 
membrane [30].

Importance of the APOΕ Genotype
The APOE genotype accounts for the vast majority of AD risk and 

AD pathology [31,32]. There are three common alleles of the APOE 
gene, i.e., APOE ε2, APOE ε3, and APOΕ ε4 [33]. In the general US 
population, the ε4 allele prevalence is approximately 13% [34]. In 
contrast with unaffected individuals in the US, over 50% of patients 
with non-familial AD carry the ε4 allele [18]. Possession of one ε4 allele 
increases the risk of developing AD by 3 to 4-fold, and possession of 
two ε4 alleles increases risk by 15-fold, as compared with the ε3/ ε3 
genotype [35]. 

This profound difference in AD risk results from only minor 
changes in the structure of the APOE molecule. The three isoforms of 
APOE differ in amino acid sequence at only chain positions 112 and 
158: the APOE ε2 allele has cysteine at both positions; the APOE ε4 
allele has arginine at both positions; and the APOE ε3 allele has cysteine 
at position 112 and arginine at 158 [36]. These small changes in amino 
acid sequence alter the biological activity of the APOE proteins in 
multiple ways, one of which is increased liver catabolism of the APOE 
ε4 lipoprotein as compared with the APOE ε3 lipoprotein [37,38].

Recently, Yassine, et al. [39] used positron emission tomography to 
demonstrate increased docosahexaenoic acid (DHA) uptake in several 
brain regions in APOE ε4 carriers. In the AD-susceptible entorhinal 
sub-region, the mean global gray matter DHA incorporation coefficient 
was 16% higher among APOE ε4 carriers (n = 9) than among APOE 
ε3 and APOE ε2 carriers (n = 13, p = 0.046). These results might be 
especially significant given that DHA is concentrated at synapses, and 
comprises up to 40% of the fatty acids in gray matter [40].

Paradoxical increase in brain activity and cognitive per-
formance in young healthy APOE ε4-positive subjects

The dominant role played by the APOΕ ε4 allele in development 
of AD [35], has elicited intense interest in the mechanism of APOE 
ε4 control of factors related to AD, particularly the amyloid protein 
precursor, APP [41], how APOE may be involved in neuroplasticity 
[42], and the role of APOE in controlling molecules related to AD 
and neuroplasticity [43]. A number of studies have demonstrated that 
although the APOΕ ε4 allele is associated with reduced cognition in 
many elderly subjects [18] just the opposite has been shown in young 
subjects possessing the APOE ε4 allele. APOE ε4-positive infants 
display enhanced mental development [44]. In a Finnish study on 1577 
children, motor activity and mental vitality increased significantly 
by APOE genotype in the ascending order of ε2/2, ε3/2, ε4/2, ε3/3, 
ε4/3, and ε4/4 [45]. A study conducted on 147 school-aged children 
reported that ε4-positive children performed better on a visuospatial 
task than did ε2-positive children [46]. Higher performance on an IQ 
test was shown for ε4-positive young females in China [47]. Increased 

verbal fluency across six decades of age span has been reported for 
ε4-positive subjects [48]. As compared with ε3/ε3 subjects, during a 
working memory task an ε3/ε4 group displayed greater brain activation 
in the medial prefrontal and parietal regions bilaterally, and in the right 
dorsolateral prefrontal cortex during a working memory task [49] While 
increased brain activation during a task may be an indication that neural 
systems are less efficient for information processing [50], such an increase 
could also represent a larger number of cortical resources and involved 
synapses available for processing incoming information. In a study in 340 
young healthy volunteers, a Swiss group measured better episodic memory 
in ε4 subjects as compared with either ε3 or ε2 carriers [51]. In summary, 
a comprehensive but not exhaustive review of the literature demonstrates 
that the APOE ε4 allele is associated with increased brain activity and 
mental performance in healthy, young individuals.

Synaptic toxicity increases with macromolecular turn-
over rate

The increased rate of DHA incorporation into neuronal 
membranes reported by Yassine et al. [39], and higher brain activity 
seen in young, healthy APOE ε4-positive individuals both support a 
higher rate of turnover in synaptic macromolecules associated with 
the APOE ε4 allele, regardless of explanation. Although neurogenesis 
can occur in the adult hippocampus [52], and increased neurogenesis 
increases the rate of synapse formation, synaptogenesis and synaptic 
pruning occur in the absence of neurogenesis. Synapses are extremely 
small and incredibly dynamic. It has been estimated that the human 
brain contains 100 billion neurons, of which 10 billion are pyramidal 
neurons found in the cerebral cortex. Each of these pyramidal neurons 
can fire approximately 1,000 times per second. There are approximately 
1015 synapses in the brain, i.e., a quadrillion, with the average half-life 
of a synapse being about 100 days [53]. Synapse turn-over rates in the 
brain vary widely anywhere from 15 minutes in the hippocampus [54] 
to many years in the stable primary cortical regions. Rarely appreciated 
is the necessity of the adult human brain to prune daily approximately 
the same number of synapses that it forms as a normal part of learning 
and memory. The number of synapses formed and actively removed is 
estimated to be one trillion per day. Given the need to remove so many 
synapses, it is not surprising that the brain would possess a robust 
system for synaptic remodeling, i.e., an intrinsic homeostatic capacity 
for synapse creation and non-pathological synaptotoxicity [55-57].

Although oxidative stress might contribute to the disruption of 
neuroplasticity seen in AD, the purpose of the following discussion 
is to illustrate the general principle that toxic insults can accumulate 
sequentially from repeated exposures. Current technology is not able 
to measure small errors that occur in lipid and protein composition, 
and three-dimensional architectural defects propagated during the 
construction and deconstruction of synapses. In contrast, at the larger 
cellular level where measurements are possible, non-repaired errors 
in DNA replication are common. The nervous system is vulnerable 
to DNA damage for a variety of reasons. First, neurons experience 
relatively high exposure to reactive oxygen species based on their high 
mitochondrial respiration rates [58]. Second, the limited capacity for 
adult neurons to proliferate can lead to the accumulation of mutational 
damage [59]. Third, neurons stay in G0, i.e., the quiescent or resting 
phase of the cell cycle and therefore employ the relatively error prone 
method of DNA repair termed non-homologous end joining [60]. 
Fourth, oxidative DNA damage can block transcription, and neurons 
are heavily dependent on transcription [61]. Fifth, vulnerable neurons 
display an exuberant inflammatory response [62]. The larger number 
of biochemical reactions occurring per unit time in the brains of 
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APOE ε4 individuals as compared with APOE ε3 individuals would 
increase the total lifetime exposure to potentially harmful oxidative 
species. Similarly, given that increased brain activity and biochemical 
reaction rate are seen in APOE ε4 positive infants and children, lifetime 
exposure to either internally generated neurotoxic macromolecules, or 
exogenous environmental pathogens or toxins would be increased. 
The remaining question in Alzheimer’s disease is exactly how APOE 
genotype, presumably through mechanisms related to the production 
or metabolism of APP, leads to disruption of synapse formation, 
impaired memory, an excess of synaptic pruning and retraction, with 
induction of hyperphosphorylation of TAU, leading to massive synapse 
loss and dementia.

The Gompertz law of survival and AD
The Gompertz survival function represents a fundamental model 

of the aging process [63-65], and depends on the initial mortality rate 
and the doubling time of that rate. The Gompertz curve is applicable 
across the evolutionary spectrum. In the year 2000, the Gompertz 
survival function accounted for 99.7% of the variance in mortality rates 
for those over the age of 30 in the United States. Across that age span, 
mortality doubled every 8.2 years for men and 7.5 years for women [18]. 

The Alzheimer’s literature is replete with the statement that AD is not 
part of normal aging [66]. The incidence of AD doubles approximately 
every five years in the population over 60. However, Ashford [18] has 
compared the Gompertz survival function doubling time of 7.5 and 
8.2 years with the five-year doubling time for AD incidence and shown 
that AD tracks age more closely than mortality. The normalcy versus 
pathogenicity of AD can be viewed from evolutionary and demographic 
perspectives. In 1900, the average lifespan in the United States was 
47.8 years (both sexes combined) [67]. AD was not a common cause 
of death in 1900. In contrast, given the current expansion of lifespans, 
approximately one-third of all men and two-thirds of all women in the 
US will contract AD prior to death. Only a limited number of other 
medical conditions approach the ubiquity of distribution displayed by 
AD in the elderly population, e.g., cataracts in whites over 80 (70%) 
[68]. As a point of comparison, acute macular degeneration with 
neovascular degeneration occurs in only 15% of white women over age 
80 living in the United Kingdom [69]. 

Until 300,000 years ago, ancestors of modern humans were 
ubiquitously ε4/ε4 and then the ε3 allele mutated from the ancestral 
ε4 allele [70]. The ε3 allele displayed a competitive survival advantage 
sufficiently robust to result in the current predominance of the ε3/ε3 
genotype which is now found in over 60% of the US population [18]. 
Similarly, the ε2 allele mutated from the ε3 allele about 200,000 years 
ago, but this protective allele has remained relatively rare with the 
homozygous ε2/ε2 variant less than 1%, and the ε3/ε2 heterozygote in 
about 11% of the population [71].

Conclusion
If the hippocampal neurons of two individuals possess the 

same susceptibility to either an endogenous or exogenous stress 
factor, the neurons with the highest turnover of proteins, lipids, and 
other macromolecules would experience a larger integrated dose of 
detriment. Small differences in pharmacokinetic effects might be 
amplified by the extremely long prodromal phase of AD, i.e., average 
age of presentation for a homozygous ε4 is about 68 years of age.

Given the ancestral primacy of the ε4 allele, and the evolutionary 
trade-off of superior performance in youth versus additional years 
beyond historical lifespans, the abnormality of the ε4 allele is somewhat 

a matter of perspective. If part of the APOE ε4-associated neurotoxic 
susceptibility is based on pharmacokinetic rather than toxicant-
receptor interactions on a per mole basis, future therapies that slow 
down synaptic pruning might carefully consider differential effects 
based on APOE allele subtype. Current knowledge of potential sources 
of Alzeimer’s patient heterogeneity is lacking. Reducing at least one 
important source of inter-subject heterogeneity, i.e., apolipoprotein 
allele frequency, is advisable. Early attempts at shifting the balance 
away from synaptic pruning might consider enrolling early stage 
Alzheimer’s patients possessing at least one ε4 allele. 
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